Underground Mining Methods PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Underground Mining Methods PDF full book. Access full book title Underground Mining Methods by W. A. Hustrulid. Download full books in PDF and EPUB format.

Underground Mining Methods

Underground Mining Methods PDF Author: W. A. Hustrulid
Publisher: SME
ISBN: 0873351932
Category : Technology & Engineering
Languages : en
Pages : 736

Book Description
Underground Mining Methods presents the latest principles and techniques in use today. Reflecting the international and diverse nature of the industry, a series of mining case studies is presented covering the commodity range from iron ore to diamonds extracted by operations located in all corners of the world. Industry experts have contributed 77 chapters. This book is certain to become a standard for every practicing mining engineer and student alike. Sections include: General Mine Design Considerations, Room-and-Pillar Mining of Hard Rock/Soft Rock, Longwall Mining of Hard Rock, Shrinkage Stoping, Sublevel Stoping, Cut-and-Fill Mining, Sublevel Caving, Panel Caving, Foundations for Design, and Underground Mining Looks to the Future.

Underground Mining Methods

Underground Mining Methods PDF Author: W. A. Hustrulid
Publisher: SME
ISBN: 0873351932
Category : Technology & Engineering
Languages : en
Pages : 736

Book Description
Underground Mining Methods presents the latest principles and techniques in use today. Reflecting the international and diverse nature of the industry, a series of mining case studies is presented covering the commodity range from iron ore to diamonds extracted by operations located in all corners of the world. Industry experts have contributed 77 chapters. This book is certain to become a standard for every practicing mining engineer and student alike. Sections include: General Mine Design Considerations, Room-and-Pillar Mining of Hard Rock/Soft Rock, Longwall Mining of Hard Rock, Shrinkage Stoping, Sublevel Stoping, Cut-and-Fill Mining, Sublevel Caving, Panel Caving, Foundations for Design, and Underground Mining Looks to the Future.

Data Mining Methods and Models

Data Mining Methods and Models PDF Author: Daniel T. Larose
Publisher: John Wiley & Sons
ISBN: 0471756474
Category : Computers
Languages : en
Pages : 340

Book Description
Apply powerful Data Mining Methods and Models to Leverage your Data for Actionable Results Data Mining Methods and Models provides: * The latest techniques for uncovering hidden nuggets of information * The insight into how the data mining algorithms actually work * The hands-on experience of performing data mining on large data sets Data Mining Methods and Models: * Applies a "white box" methodology, emphasizing an understanding of the model structures underlying the softwareWalks the reader through the various algorithms and provides examples of the operation of the algorithms on actual large data sets, including a detailed case study, "Modeling Response to Direct-Mail Marketing" * Tests the reader's level of understanding of the concepts and methodologies, with over 110 chapter exercises * Demonstrates the Clementine data mining software suite, WEKA open source data mining software, SPSS statistical software, and Minitab statistical software * Includes a companion Web site, www.dataminingconsultant.com, where the data sets used in the book may be downloaded, along with a comprehensive set of data mining resources. Faculty adopters of the book have access to an array of helpful resources, including solutions to all exercises, a PowerPoint(r) presentation of each chapter, sample data mining course projects and accompanying data sets, and multiple-choice chapter quizzes. With its emphasis on learning by doing, this is an excellent textbook for students in business, computer science, and statistics, as well as a problem-solving reference for data analysts and professionals in the field. An Instructor's Manual presenting detailed solutions to all the problems in the book is available onlne.

Coal

Coal PDF Author: National Research Council
Publisher: National Academies Press
ISBN: 030911022X
Category : Science
Languages : en
Pages : 183

Book Description
Coal will continue to provide a major portion of energy requirements in the United States for at least the next several decades. It is imperative that accurate information describing the amount, location, and quality of the coal resources and reserves be available to fulfill energy needs. It is also important that the United States extract its coal resources efficiently, safely, and in an environmentally responsible manner. A renewed focus on federal support for coal-related research, coordinated across agencies and with the active participation of the states and industrial sector, is a critical element for each of these requirements. Coal focuses on the research and development needs and priorities in the areas of coal resource and reserve assessments, coal mining and processing, transportation of coal and coal products, and coal utilization.

Data Mining Methods for Knowledge Discovery

Data Mining Methods for Knowledge Discovery PDF Author: Krzysztof J. Cios
Publisher: Springer Science & Business Media
ISBN: 1461555892
Category : Computers
Languages : en
Pages : 508

Book Description
Data Mining Methods for Knowledge Discovery provides an introduction to the data mining methods that are frequently used in the process of knowledge discovery. This book first elaborates on the fundamentals of each of the data mining methods: rough sets, Bayesian analysis, fuzzy sets, genetic algorithms, machine learning, neural networks, and preprocessing techniques. The book then goes on to thoroughly discuss these methods in the setting of the overall process of knowledge discovery. Numerous illustrative examples and experimental findings are also included. Each chapter comes with an extensive bibliography. Data Mining Methods for Knowledge Discovery is intended for senior undergraduate and graduate students, as well as a broad audience of professionals in computer and information sciences, medical informatics, and business information systems.

Data Mining: Concepts and Techniques

Data Mining: Concepts and Techniques PDF Author: Jiawei Han
Publisher: Elsevier
ISBN: 0123814804
Category : Computers
Languages : en
Pages : 740

Book Description
Data Mining: Concepts and Techniques provides the concepts and techniques in processing gathered data or information, which will be used in various applications. Specifically, it explains data mining and the tools used in discovering knowledge from the collected data. This book is referred as the knowledge discovery from data (KDD). It focuses on the feasibility, usefulness, effectiveness, and scalability of techniques of large data sets. After describing data mining, this edition explains the methods of knowing, preprocessing, processing, and warehousing data. It then presents information about data warehouses, online analytical processing (OLAP), and data cube technology. Then, the methods involved in mining frequent patterns, associations, and correlations for large data sets are described. The book details the methods for data classification and introduces the concepts and methods for data clustering. The remaining chapters discuss the outlier detection and the trends, applications, and research frontiers in data mining. This book is intended for Computer Science students, application developers, business professionals, and researchers who seek information on data mining. - Presents dozens of algorithms and implementation examples, all in pseudo-code and suitable for use in real-world, large-scale data mining projects - Addresses advanced topics such as mining object-relational databases, spatial databases, multimedia databases, time-series databases, text databases, the World Wide Web, and applications in several fields - Provides a comprehensive, practical look at the concepts and techniques you need to get the most out of your data

Data Mining

Data Mining PDF Author: Ian H. Witten
Publisher: Elsevier
ISBN: 0080890369
Category : Computers
Languages : en
Pages : 665

Book Description
Data Mining: Practical Machine Learning Tools and Techniques, Third Edition, offers a thorough grounding in machine learning concepts as well as practical advice on applying machine learning tools and techniques in real-world data mining situations. This highly anticipated third edition of the most acclaimed work on data mining and machine learning will teach you everything you need to know about preparing inputs, interpreting outputs, evaluating results, and the algorithmic methods at the heart of successful data mining. Thorough updates reflect the technical changes and modernizations that have taken place in the field since the last edition, including new material on Data Transformations, Ensemble Learning, Massive Data Sets, Multi-instance Learning, plus a new version of the popular Weka machine learning software developed by the authors. Witten, Frank, and Hall include both tried-and-true techniques of today as well as methods at the leading edge of contemporary research. The book is targeted at information systems practitioners, programmers, consultants, developers, information technology managers, specification writers, data analysts, data modelers, database R&D professionals, data warehouse engineers, data mining professionals. The book will also be useful for professors and students of upper-level undergraduate and graduate-level data mining and machine learning courses who want to incorporate data mining as part of their data management knowledge base and expertise. - Provides a thorough grounding in machine learning concepts as well as practical advice on applying the tools and techniques to your data mining projects - Offers concrete tips and techniques for performance improvement that work by transforming the input or output in machine learning methods - Includes downloadable Weka software toolkit, a collection of machine learning algorithms for data mining tasks—in an updated, interactive interface. Algorithms in toolkit cover: data pre-processing, classification, regression, clustering, association rules, visualization

Data Mining Solutions

Data Mining Solutions PDF Author: Christopher Westphal
Publisher:
ISBN:
Category : Computers
Languages : en
Pages : 648

Book Description
Cutting-edge data mining techniques and tools for solving your toughest analytical problems Data Mining Solutions In down-to-earth language, data mining experts Christopher Westphal and Teresa Blaxton introduce a brand new approach to data mining analysis. Through their extensive real-world experience, they have developed and documented many practical and proven techniques to make your own data mining efforts more successful. You'll get a refreshing "out-of-the-box" approach to data mining that will help you maximize your time and problem-solving resources, and prepare for the next wave of data mining-visualization. You will read about ways in which data mining has been used to: * Discover patterns of insider trading in the stock market * Evaluate the utility of marketing campaigns * Analyze retail sales patterns across geographic regions * Identify money laundering operations * Target DNA sequences for pharmaceutical testing and development The book is accompanied by a CD-ROM that contains: * Demo and trial versions of numerous visual data mining tools * Active web-page links for each of the products profiled * GIF files corresponding to all book images

Process Mining Techniques in Business Environments

Process Mining Techniques in Business Environments PDF Author: Andrea Burattin
Publisher: Springer
ISBN: 3319174827
Category : Computers
Languages : en
Pages : 219

Book Description
After a brief presentation of the state of the art of process-mining techniques, Andrea Burratin proposes different scenarios for the deployment of process-mining projects, and in particular a characterization of companies in terms of their process awareness. The approaches proposed in this book belong to two different computational paradigms: first to classic "batch process mining," and second to more recent "online process mining." The book encompasses a revised version of the author's PhD thesis, which won the "Best Process Mining Dissertation Award" in 2014, awarded by the IEEE Task Force on Process Mining.

Advanced Data Mining Techniques

Advanced Data Mining Techniques PDF Author: David L. Olson
Publisher: Springer Science & Business Media
ISBN: 354076917X
Category : Business & Economics
Languages : en
Pages : 182

Book Description
This book covers the fundamental concepts of data mining, to demonstrate the potential of gathering large sets of data, and analyzing these data sets to gain useful business understanding. The book is organized in three parts. Part I introduces concepts. Part II describes and demonstrates basic data mining algorithms. It also contains chapters on a number of different techniques often used in data mining. Part III focuses on business applications of data mining.

Techniques in Underground Mining

Techniques in Underground Mining PDF Author: Richard E. Gertsch
Publisher: Society for Mining Metallurgy
ISBN: 9780873351638
Category : Technology & Engineering
Languages : en
Pages : 823

Book Description
This 800+ page book contains a wealth of information for mining students and industry professionals. It consists of selected material from the out-of-print industry standard, Underground Mining Methods Handbook. More than 40 chapters covering such underground mining topics as sampling, planning, reserve analysis, cost calculations, various methods of support, block and panel caving, and sublevel caving make up this comprehensive text. Numerous tables and figures enhance the extensive material found in each chapter. An excellent teaching tool and source book, Techniques in Underground Mining is a must for any mining student or engineer.