Millimeter-wave Dual-polarized Antennas and Arrays for 5G Switched Beam Mobile Terminal and Base Station Applications PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Millimeter-wave Dual-polarized Antennas and Arrays for 5G Switched Beam Mobile Terminal and Base Station Applications PDF full book. Access full book title Millimeter-wave Dual-polarized Antennas and Arrays for 5G Switched Beam Mobile Terminal and Base Station Applications by 葉宇庭. Download full books in PDF and EPUB format.

Millimeter-wave Dual-polarized Antennas and Arrays for 5G Switched Beam Mobile Terminal and Base Station Applications

Millimeter-wave Dual-polarized Antennas and Arrays for 5G Switched Beam Mobile Terminal and Base Station Applications PDF Author: 葉宇庭
Publisher:
ISBN:
Category :
Languages : en
Pages :

Book Description


Millimeter-wave Dual-polarized Antennas and Arrays for 5G Switched Beam Mobile Terminal and Base Station Applications

Millimeter-wave Dual-polarized Antennas and Arrays for 5G Switched Beam Mobile Terminal and Base Station Applications PDF Author: 葉宇庭
Publisher:
ISBN:
Category :
Languages : en
Pages :

Book Description


Millimeter Wave Antennas for 5G Mobile Terminals and Base Stations

Millimeter Wave Antennas for 5G Mobile Terminals and Base Stations PDF Author: Shiban Kishen Koul
Publisher: CRC Press
ISBN: 1000223663
Category : Computers
Languages : en
Pages : 310

Book Description
This book discusses antenna designs for handheld devices as well as base stations. The book serves as a reference and a handy guide for graduate students and PhD students involved in the field of millimeter wave antenna design. It also gives insights to designers and practicing engineers who are actively engaged in design of antennas for future 5G devices. It offers an in-depth study, performance analysis and extensive characterization of novel antennas for 5G applications. The reader will learn about basic design methodology and techniques to develop antennas for 5G applications including concepts of path loss compensation, co-design of commercial 4G antennas with millimeter wave 5G antennas and antennas used in phase array and pattern diversity modules. Practical examples included in the book will help readers to build high performance antennas for 5G subsystems/systems using low cost technology. Key Features Provides simple design methodology of different antennas for handheld devices as well as base stations for 5G applications. Concept of path loss compensation introduced. Co-design of commercial 4G antennas with millimetre wave 5G antennas presented. Comparison of phased array versus pattern diversity modules discussed in detail. Fabrication and Measurement challenges at mmWaves and Research Avenues in antenna designs for 5G and beyond presented. Shiban Kishen Koul is an emeritus professor at the Centre for Applied Research in Electronics at the Indian Institute of Technology Delhi. He served as the chairman of Astra Microwave Products Limited, Hyderabad from 2009-2018. He is a Life Fellow of the Institution of Electrical and Electronics Engineering (IEEE), USA, a Fellow of the Indian National Academy of Engineering (INAE), and a Fellow of the Institution of Electronics and Telecommunication Engineers (IETE). Karthikeya G S worked as an assistant professor in Visvesvaraya technological university from 2013 to 2016 and completed his PhD from the Centre for Applied Research in Electronics at the Indian Institute of Technology Delhi in Dec.2019. He is a member of IEEE-Antenna Propagation Society and Antenna Test and Measurement society.

Millimeter-Wave Single- and Dual-Polarized 2x2 MIMO Phased Arrays and In-Situ Over-the-Air System-Level Self-Calibration Techniques for 5G Applications

Millimeter-Wave Single- and Dual-Polarized 2x2 MIMO Phased Arrays and In-Situ Over-the-Air System-Level Self-Calibration Techniques for 5G Applications PDF Author: Ahmed Nafe
Publisher:
ISBN:
Category :
Languages : en
Pages : 142

Book Description
This dissertation presents two millimeter-wave phased-antenna arrays at 28 GHz for fifth-generation (5G) mobile communication applications as well as techniques for performing in-situ self-test and self-calibration of single- and dual-polarized 5G phased-arrays. First, a scalable 64-element single-polarized transmit/receive phased array is built with 2x2 beamformer chips on a low-cost printed circuit board (PCB). The design emphasis is placed on minimizing the printed circuit board cost, optimizing the cross-polarization performance, and on-grid scalability. The array is capable of scanning +/-50 deg. in azimuth and +/-45deg. in elevation at 29 GHz with cross-polarization rejection better than 20 dB. It achieves an effective isotropic radiated power (EIRP) >50 dBm over a 4 GHz bandwidth from 27 to 31 GHz. Therefore, it is a suitable candidate for Gbps multi-user multiple-input multiple-output (MU-MIMO) base-station applications. Second, a 2x64-element dual-polarized dual-beam phased array for 5G polarization MIMO is built. The phased-array has two 1:16 dual Wilkinson networks and microstrip antennas with rotated feeds for cross-polarization cancellation. The array demonstrates a measured effective isotropic radiated power (EIRP) at Psat of 52 dBm for each beam and is capable of scanning +/-50 deg.in azimuth and +/-25 deg. in elevation with >28-dB cross-polarization rejection. Simultaneous dual-beam operation is demonstrated with near-ideal patterns for each beam. The array demonstrates independent simultaneously transmitted 2x16-quadrature amplitude modulation (QAM) and 2x64- QAM data streams delivering an aggregate maximum data rate of 2x20 and 2x30 Gb/s, respectively. Next, the problem of phased-array calibration is considered. Two calibration techniques are developed and tested for calibrating single and dual-polarized 5G phased arrays at 28 GHz.The first technique addresses the calibration of single-polarized phased-arrays in a MU-MIMO hybrid beamforming base station system. The procedure, labeled Quad-BIST, enables built-in self-test (BIST) and self-calibration of the arrays in-situ without having to remove the array from the field. Quad-BIST relies on mutual coupling between antennas in neighboring arrays arranged in Quad-fashion to extract the calibration coefficients and perform channel characterization. Quad-BIST was successfully applied to 5G 28 GHz arrays with 4x4 and 8x8 elements in each quadrant. The results show that Quad-BIST predicts the channel states (gain and phase control) with rms errors of 0.2 dB/2 deg. and 0.4 dB/2.5 deg. for the 4x4 and 8x8 quadrants, respectively, as compared to far-field techniques. The relative channel ratios are found to be within rms errors of0.8 dB/7.5deg.. Near-ideal patterns are attained using the quadrant-level calibration for both arrays with side-lobe level's below -20 dB over scan. The second technique is for the calibration of dual-polarized dual-beam phased arrays. The procedure, labeled (DP-BIST), exploits the mutual coupling between different antennas of orthogonally polarized beams sharing the same aperture to enable in-situ self-calibration and self-test of the phased array channels of each beam. DP-BIST was applied to a 16-element dual-polarized dual-beam linear phased-array at 29 GHz, and predicted the relative channel states (gain and phase control) with rms errors better than 0.3 dB /3 deg. and the relative channel offsets with rms errors of 0.8 dB /6 deg. over a wide-bandwidth. These results demonstrate its feasibility for use in 5G polarization MIMO phased arrays.

Printed Antennas for 5G Networks

Printed Antennas for 5G Networks PDF Author: Ladislau Matekovits
Publisher: Springer Nature
ISBN: 3030876055
Category : Technology & Engineering
Languages : en
Pages : 372

Book Description
The book provides a comprehensive overview of antennas for 5G technology, such as MIMO, multiband antennas, Magneto-Electric Dipole Antenna and PIFA Antenna for 5G networks, phased array antennas for 5G access, beam-forming and beam-steering issues, 5G antennas for specific applications (smartphone, cognitive radio) and advance antenna concept and materials for 5G. The book also covers ooptimizations methods for passive and active devices in mm-Wave 5G networks. It explores topics which influence the design and characterization of antennas such as data rates, high isolation, pattern and spatial diversity, making 5G antennas more suitable for a multipath environment. The book represents a learning tool for researchers in the field, and enables engineers, designers and manufacturers to identify key design challenges of antennas for 5G networks, and characterize novel antennas for 5G networks.

Novel Millimetre Wave Antennas for MIMO and 5G Applications

Novel Millimetre Wave Antennas for MIMO and 5G Applications PDF Author: Shiban Kishen Koul
Publisher: Springer Nature
ISBN: 9811672784
Category : Technology & Engineering
Languages : en
Pages : 181

Book Description
This book presents state-of-the-art millimetre wave antennas for next generation 5G communications. The propagation losses associated with the millimetre waves and the signal blockage due to the objects present between transmitter and receiver require novel antenna topologies to address these issues. Various aspects of antenna design related to millimetre wave 5G communication including 28-GHz channel characteristics, mmWave antenna requirements, antenna design strategies for 28 GHz, MIMO/multibeam antennas, and mmWave lens antennas are highlighted. Apart from the general antenna requirements and study related to the 28 GHz frequency band, various new metamaterial-based antennas employing uniaxial or biaxial anisotropic media that enhance the antenna radiation performance are covered in detail. In addition, various new antenna systems such as wide-scan antenna arrays, dual-polarized antennas, and dual-beam/multibeam antennas are covered in this book. The book concludes with the glimpses of the millimetre wave lens antennas and the design of very thin planar metamaterial lens for 5G massive MIMO applications.

Millimeter-Wave Components and Antennas for Spatial and Polarization Diversity Using PRGW Technology

Millimeter-Wave Components and Antennas for Spatial and Polarization Diversity Using PRGW Technology PDF Author: Mohamed Mamdouh Mahmoud Ali Ali
Publisher:
ISBN:
Category :
Languages : en
Pages : 0

Book Description
The evolution of the wireless communication systems to the future generation is accompanied by a huge improvement in the system performance through providing a high data rate with low latency. These systems require access to millimeter wave (mmWave) bands, which offer several advantages such as physically smaller components and much wider bandwidthcomparedtomicrowavefrequencies. However, mmWavecomponentsstillneed a significant improvement to follow the rapid variations in future technologies. Although mmWave frequencies can carry more data, they are limited in terms of their penetration capabilities and their coverage range. Moreover, these frequencies avoid deploying traditional guiding technologies such as microstrip lines due to high radiation and material losses. Hence, utilizing new guiding structure techniques such as Printed Ridge Gap Waveguide (PRGW) is essential in future mmWave systems implementation. ThemainpurposeofthisthesisistodesignmmWavecomponents,antennasubsystems and utilize both in beam switching systems. The major mmWave components addressed in this thesis are hybrid coupler, crossover, and differential power divider where the host guidingstructureisthePRGW.Inaddition,variousdesignsfordifferentialfeedingPRGW antennas and antenna arrays are presented featuring wide bandwidth and high gain in mmWave band. Moreover, the integration of both the proposed components and the featured antennas is introduced. This can be considered as a significant step toward the requirements fulfillment of today's advanced communication systems enabling both space and polarization diversity. The proposed components are designed to meet the future ever-increasing consumer experience and technical requirements such as low loss, compact size, and low-cost fabrication. This directed the presented research to have a contribution into three major parts. The first part highlights the feeding structures, where mmWave PRGW directional couplers and differential feeding power divider are designed and validated. These components are among the most important passive elements of microwave circuits used in antennabeam-switchingnetworks. Different3-dBquadraturehybridcouplersandcrossover prototypes are proposed, featured with a compact size and a wide bandwidth beyond 10 % at 30 GHz. In the second part, a beam switching network implemented using hybrid couplers is presented. The proposed beam switching network is a 4 × 4 PRGW Butler matrix that used to feed a Magneto-electric (ME) dipole antenna array. As a result, a 2-D scanning antenna array with a compact size, wide bandwidth, and high radiation efficiency larger than84%isachieved. Furthergainenhancementof5dBiisachievedthroughdeployinga hybridgainenhancementtechniqueincludingAMCmushroomshapesaroundtheantenna array with a dielectric superstrate located in the broadside direction. The proposed scanning antenna array can be considered as a step toward the desired improvement in the data rate and coverage through enabling the space diversity for the communication link. The final activity is related to the development of high-gain wide-band mmWave antenna arrays for potential use in future mmWave applications. The first proposed configuration is a differential feeding circular polarized aperture antenna array implemented with PRGW technology. Differential feeding antenna designs offer more advantages than single- ended antennas for mmWave communications as they are easy to be integrated with differential mmWave monolithic ICs that have high common-mode rejection ratio providing an immunity of the environmental noise. The proposed differential feeding antenna array is designed and fabricated, which featured with a stable high gain and a high radiation efficiency over a wide bandwidth. Another proposed configuration is a dualpolarized ME-dipole PRGW antenna array for mmWave wireless communication. Dual polarizationisconsideredoneofthemostimportantantennasolutionsthatcansavecosts and space for modern communication systems. In addition, it is an effective strategy for multiple-input and multiple-output systems that can reduce the size of multiple antennas systems by utilizing extra orthogonal polarization. The proposed dual- polarized antenna array is designed to achieve a stable gain of 15 ± 1 dBi with low cross- polarization less than -30 dB over a wide frequency range of 20 % at 30 GHz.

New Materials and Devices Enabling 5G Applications and Beyond

New Materials and Devices Enabling 5G Applications and Beyond PDF Author: Nadine Collaert
Publisher: Elsevier
ISBN: 0128234504
Category : Technology & Engineering
Languages : en
Pages : 369

Book Description
New Materials and Devices for 5G Applications and Beyond focuses on the materials, device architectures and enabling integration schemes for 5G applications and emerging technologies. It gives a comprehensive overview of the trade-offs, challenges and unique properties of novel upcoming technologies. Starting from the application side and its requirements, the book examines different technologies under consideration for the different functions, both more conventional to exploratory, and within this context the book provides guidance to the reader on how to possibly optimize the system for a particular application. This book aims at guiding the reader through the technologies required to enable 5G applications, with the main focus on mm-wave frequencies, up to THz. New Materials and Devises for 5G Applications and Beyond is suitable for industrial researchers and development engineers, and researchers in materials science, device engineering and circuit design. Reviews challenges and emerging opportunities for materials, devices, and integration to enable 5G technologies Includes discussion of technologies such as RF-MEMs, RF FINFETs, and transistors based on current and emerging materials (InP, GaN, etc.) Focuses on mm-wave frequencies up to the terahertz regime

Dual-Band and Wideband Millimeter-Wave Phased Arrays for 5G Communication Systems

Dual-Band and Wideband Millimeter-Wave Phased Arrays for 5G Communication Systems PDF Author: Shufan Wang
Publisher:
ISBN:
Category :
Languages : en
Pages : 0

Book Description
Demands of multi-standard operation have risen in millimeter-wave 5G phased arrays, in order to achieve more band coverage, reduce fabrication and deployment costs and realize inter-band carrier aggregation. This dissertation investigates dual-band and wideband design approaches to realize multi-standard phased array systems. In the dual-band approach, a 32-element dual-band, dual-beam phased array is designed by integrating dual-band patch antennas with commercial narrowband beamformers. Another design introduces an 8-element dual-band, dual-polarized, dual-beam phased array targeted at compact system applications. Both designs achieve 26-29 GHz and 37-41 GHz operation. In the wideband phased array approach, a novel stacked wideband dipole antenna is developed and integrated with a wideband SiGe Tx/Rx beamformers to achieve operation of 23-46 GHz. A single-polarized 64-element array and a dual-polarized 8-element array are then demonstrated with state-of-the-art performance. The 64-element array achieves a maximum EIRP of 50 dBm at P1dB operation, and 8-element dual-pol. array achieves 29 dBm. Both arrays demonstrate less than 4% EVM when transmitting 64-QAM 5G OFDM signal with 6-8 dB backoff from P1dB.

Advanced Millimeter-wave Technologies

Advanced Millimeter-wave Technologies PDF Author: Duixian Liu
Publisher: John Wiley & Sons
ISBN: 047099617X
Category : Technology & Engineering
Languages : en
Pages : 866

Book Description
This book explains one of the hottest topics in wireless and electronic devices community, namely the wireless communication at mmWave frequencies, especially at the 60 GHz ISM band. It provides the reader with knowledge and techniques for mmWave antenna design, evaluation, antenna and chip packaging. Addresses practical engineering issues such as RF material evaluation and selection, antenna and packaging requirements, manufacturing tolerances, antenna and system interconnections, and antenna One of the first books to discuss the emerging research and application areas, particularly chip packages with integrated antennas, wafer scale mmWave phased arrays and imaging Contains a good number of case studies to aid understanding Provides the antenna and packaging technologies for the latest and emerging applications with the emphases on antenna integrations for practical applications such as wireless USB, wireless video, phase array, automobile collision avoidance radar, and imaging

Microwave and Millimeter-wave Antenna Design for 5G Smartphone Applications

Microwave and Millimeter-wave Antenna Design for 5G Smartphone Applications PDF Author: Wonbin Hong
Publisher: John Wiley & Sons
ISBN: 1394182422
Category : Technology & Engineering
Languages : en
Pages : 372

Book Description
In-depth and practical coverage of design considerations for 5G antennas In Microwave and Millimeter-wave Antenna Design for 5G Smartphone Applications, two distinguished researchers deliver a holistic, multidisciplinary approach to antenna design methodologies. The book covers approaches ranging from sub-6GHz microwave to the millimeter-wave spectrum, explaining how microwave and millimeter-wave 5G antennas coexist and function, both independently and collaboratively. The book offers coverage of key considerations for designing millimeter-wave 5G antennas within space-constrained mobile devices, as well as practical concerns, like cost, fabrication yield, and heat dissipation. Readers will also find explorations of the likely future directions of 5G antenna evolution, as well as: A thorough introduction to basic concepts in 5G FR1 Band mobile antenna design, including discussions of antenna placement, element design, and topologies Comprehensive explorations of antenna feeding mechanisms and impedance matching, including chassis considerations and effects Practical discussions of frequency tunable millimeter-wave 5G antenna-in-package Fulsome treatments of compact millimeter-wave 5G antenna solutions and millimeter-wave antenna-on-display technologies for 5G mobile devices Perfect for antenna, microwave, communications, and radio-frequency engineers, Microwave and Millimeter-wave Antenna Design for 5G Smartphone Applications will also benefit graduate students, policymakers, regulators, and researchers with an interest in communications and antennas.