Migration processes in a model deep repository for the disposal of intermediate level nuclear waste

Migration processes in a model deep repository for the disposal of intermediate level nuclear waste PDF Author: S. M. Sharland
Publisher:
ISBN: 9780705806190
Category : Radioisotopes
Languages : en
Pages : 38

Book Description


Disposition of High-Level Waste and Spent Nuclear Fuel

Disposition of High-Level Waste and Spent Nuclear Fuel PDF Author: National Research Council
Publisher: National Academies Press
ISBN: 0309073170
Category : Science
Languages : en
Pages : 215

Book Description
Focused attention by world leaders is needed to address the substantial challenges posed by disposal of spent nuclear fuel from reactors and high-level radioactive waste from processing such fuel. The biggest challenges in achieving safe and secure storage and permanent waste disposal are societal, although technical challenges remain. Disposition of radioactive wastes in a deep geological repository is a sound approach as long as it progresses through a stepwise decision-making process that takes advantage of technical advances, public participation, and international cooperation. Written for concerned citizens as well as policymakers, this book was sponsored by the U.S. Department of Energy, U.S. Nuclear Regulatory Commission, and waste management organizations in eight other countries.

The Microbiology of Nuclear Waste Disposal

The Microbiology of Nuclear Waste Disposal PDF Author: Jonathan R. Lloyd
Publisher: Elsevier
ISBN: 012818695X
Category : Science
Languages : en
Pages : 376

Book Description
The Microbiology of Nuclear Waste Disposal is a state-of-the-art reference featuring contributions focusing on the impact of microbes on the safe long-term disposal of nuclear waste. This book is the first to cover this important emerging topic, and is written for a wide audience encompassing regulators, implementers, academics, and other stakeholders. The book is also of interest to those working on the wider exploitation of the subsurface, such as bioremediation, carbon capture and storage, geothermal energy, and water quality. Planning for suitable facilities in the U.S., Europe, and Asia has been based mainly on knowledge from the geological and physical sciences. However, recent studies have shown that microbial life can proliferate in the inhospitable environments associated with radioactive waste disposal, and can control the long-term fate of nuclear materials. This can have beneficial and damaging impacts, which need to be quantified. Encompasses expertise from both the bio and geo disciplines, aiming to foster important collaborations across this disciplinary divide Includes reviews and research papers from leading groups in the field Provides helpful guidance in light of plans progressing worldwide for geological disposal facilities Includes timely research for planning and safety case development

Energy Research Abstracts

Energy Research Abstracts PDF Author:
Publisher:
ISBN:
Category : Power resources
Languages : en
Pages : 780

Book Description


Gas Generation and Migration in Deep Geological Radioactive Waste Repositories

Gas Generation and Migration in Deep Geological Radioactive Waste Repositories PDF Author: R.P. Shaw
Publisher: Geological Society of London
ISBN: 1862397228
Category : Science
Languages : en
Pages : 260

Book Description
Understanding the behaviour of gases in the context of radioactive waste disposal is a fundamental requirement in developing a safety case for the disposal of radioactive waste. Of particular importance are the long-term performance of bentonite buffers and cement-based backfill materials that may be used to encapsulate and surround the waste in a repository, and the behaviour of plastic clays, indurated mudrocks and crystalline formations that may be the host rocks for a repository. The EC Euratom programme funded project, FORGE, has provided new insights into the processes and mechanisms governing gas generation and migration with the aim of reducing uncertainty. This volume brings together papers on aspects of this topic arising from both the FORGE project and work undertaken elsewhere. This has been achieved by the acquisition of new experimental data coupled with modelling, through a series of laboratory and field-scale experiments performed at a number of underground research laboratories throughout Europe.

Coupled Modelling of Gas Migration in Host Rock and Application to a Potential Deep Geological Repository for Nuclear Wastes in Ontario

Coupled Modelling of Gas Migration in Host Rock and Application to a Potential Deep Geological Repository for Nuclear Wastes in Ontario PDF Author: Xue Wei
Publisher:
ISBN:
Category :
Languages : en
Pages :

Book Description
With the widening and increasing use of nuclear energy, it is very important to design and build long-term deep geological repositories (DGRs) to manage radioactive waste. The disposal of nuclear waste in deep rock formations is currently being investigated in several countries (e.g., Canada, China, France, Germany, India, Japan and Switzerland). In Canada, a repository for low and intermediate level radioactive waste is being proposed in Ontario's sedimentary rock formations. During the post-closure phase of a repository, significant quantities of gas will be generated from several processes, such as corrosion of metal containers or microbial degradation of organic waste. The gas pressure could influence the engineered barrier system and host rock and might disturb the pressure-head gradients and groundwater flows near the repository. An increasing gas pressure could also cause damage to the host rock by inducing the development of micro-/macro-cracks. This will further cause perturbation to the hydrogeological properties of the host rock such as desiccation of the porous media, change in degree of saturation and hydraulic conductivity. In this regard, gas generation and migration may affect the stability or integrity of the integrate barriers and threaten the biosphere through the transmitting gaseous radionuclides as long-term contaminants. Thus, from the safety perspective of DGRs, gas generation and migration should be considered in their design and construction. The understanding and modelling of gas migration within the host rock (natural barrier) and the associated potential impacts on the integrity of the natural barrier are important for the safety assessment of a DGR. Therefore, the key objectives of this Ph.D. study include (i) the development of a simulator for coupled modelling of gas migration in the host rock of a DGR for nuclear waste; and (ii) the numerical investigation of gas migration in the host rock of a DGR for nuclear waste in Ontario by using the developed simulator. Firstly, a new thermo-hydro-mechanical-chemical (THMC) simulator (TOUGHREACT-COMSOL) has been developed to address these objectives. This simulator results from the coupling of the well-established numerical codes, TOUGHREACT and COMSOL. A series of mathematical models, which include an elastoplastic-damage model have been developed and then implemented into the simulator. Then, the predictive ability of the simulator is validated against laboratory and field tests on gas migration in host rocks. The validation results have shown that the developed simulator can predict well the gas migration in host rocks. This agreement between the predicted results and the experimental data indicates that the developed simulator can reasonably predict gas migration in DGR systems. The new simulator is used to predict gas migration and its effects in a potential DGR site in Ontario. Valuable results regarding gas migration in a potential DGR located in Ontario have been obtained. The research conducted in this Ph.D. study will provide a useful tool and information for the understanding and prediction of gas migration and its effect in a DGR, particularly in Ontario.

Geologic Disposal of High-Level Radioactive Waste

Geologic Disposal of High-Level Radioactive Waste PDF Author: Roland Pusch
Publisher: CRC Press
ISBN: 1351256793
Category : Science
Languages : en
Pages : 220

Book Description
Geologic Disposal of High-Level Radioactive Waste examines the fundamental knowledge and conditions to be considered and applied by planners and other professionals when establishing national repository concepts, and constructing repositories for the long-term isolation of highly radioactive waste from surrounding crystalline rock. It emphasizes the important roles of structural geology, hydrogeology, hydrochemistry, and construction techniques. It specifically examines the disposal of steel canisters with spent reactor fuel in mined repositories (MR) at medium-depth, and in very deep boreholes (VDH). While disposal in mined repositories has been widely tested, the option of placing high-level radioactive waste in deep boreholes has been considered in the US, UK, and elsewhere in Europe, but has not yet been tested on a broad scale. This book examines the possibility of safe disposal for very long periods, proposing that the high salt content and density of groundwater at large depths are such that potentially contaminated water would not rise high enough to affect the more shallow biosphere. Features: Presents the best practices for disposal of spent fuel from nuclear reactors. Assesses waste isolation capacities in short- and long-term perspectives, and the associated risks. Describes site selection principles and the economics of construction of different types of repositories. Includes an appendix which provides the latest international recommendations and guidelines concerning the disposal of highly radioactive waste.

An Introduction to Nuclear Waste Immobilisation

An Introduction to Nuclear Waste Immobilisation PDF Author: Michael I. Ojovan
Publisher: Elsevier
ISBN: 0080455719
Category : Technology & Engineering
Languages : en
Pages : 334

Book Description
Safety and environmental impact is of uppermost concern when dealing with the movement and storage of nuclear waste. The 20 chapters in 'An Introduction to Nuclear Waste Immobilisation' cover all important aspects of immobilisation, from nuclear decay, to regulations, to new technologies and methods. Significant focus is given to the analysis of the various matrices used in transport: cement, bitumen and glass, with the greatest attention being given to glass. The last chapter concentrates on the performance assessment of each matrix, and on new developments of ceramics and glass composite materials, thermochemical methods and in-situ metal matrix immobilisation. The book thoroughly covers all issues surrounding nuclear waste: from where to locate nuclear waste in the environment, through nuclear waste generation and sources, treatment schemes and technologies, immobilisation technologies and waste forms, disposal and long term behaviour. Particular attention is paid to internationally approved and worldwide-applied approaches and technologies. * Each chapter focuses on a different matrix used in nuclear waste immobilisation: Cement, bitumen, glass and new materials. * Keeps the most important issues surrounding nuclear waste – such as treatment schemes and technologies, and disposal - at the forefront.

Scientific and Technical Basis for the Geological Disposal of Radioactive Wastes

Scientific and Technical Basis for the Geological Disposal of Radioactive Wastes PDF Author:
Publisher: Technical Reports Series
ISBN:
Category : Business & Economics
Languages : en
Pages : 98

Book Description
This report focuses on the different functions of a repository within its life cycle and describes the processes relevant to the containment of long lived radioactive waste and other criteria influencing the long term integrity of the repository. It emphasizes the central role of safety and the importance of safety/performance assessments in the decision making process during repository development.

UK Nuclear Fuel Waste Management Program

UK Nuclear Fuel Waste Management Program PDF Author: J. R. Grover
Publisher: CRC Press
ISBN: 9783718604715
Category : Science
Languages : en
Pages : 312

Book Description