Mid-Infrared and Terahertz Quantum Cascade Lasers

Mid-Infrared and Terahertz Quantum Cascade Lasers PDF Author: Dan Botez
Publisher: Cambridge University Press
ISBN: 1108570607
Category : Technology & Engineering
Languages : en
Pages : 552

Book Description
Learn how the rapidly expanding area of mid-infrared and terahertz photonics has been revolutionized in this comprehensive overview. State-of-the-art practical applications are supported by real-life examples and expert guidance. Also featuring fundamental theory enabling you to improve performance of both existing and future devices.

Terahertz and Mid Infrared Radiation

Terahertz and Mid Infrared Radiation PDF Author: Mauro F. Pereira
Publisher: Springer
ISBN: 940070769X
Category : Science
Languages : en
Pages : 218

Book Description
Terahertz (THz) and Mid-Infrared (MIR) radiation (TERA-MIR) can be transmitted through nearly any material without causing biological harm. Novel and rapid methods of detection can be created with devices operation in these spectral ranges allowing scanning for weapons, detecting hidden explosives (including plastic landmines), controlling the quality of food and a host of other exciting applications. This book focuses on mathematical and physical aspects of the field, on unifying these two spectral domains (THz and MIR) with regard to common sources, detectors, materials and applications, and on key interdisciplinary topics. The main THz and MIR source is the quantum cascade laser (QCL). Thus significant attention is paid to the challenge of turning this advanced technology into affordable commercial devices so as to exploit its enormous potential. However other alternatives to THz QCLs are also presented, e.g. sub-terahertz imaging from avalanching GaAs bipolar transistors, Josephson junctions as THz sources, semiconductor materials for pulsed THz sources, superconducting THz electronics with Josephson vortices. In summary this book delivers a global picture of the state of the art in TERA-MIR generation, detection and applications.

Mid-infrared Quantum Cascade Lasers for Chaos Secure Communications

Mid-infrared Quantum Cascade Lasers for Chaos Secure Communications PDF Author: Olivier Spitz
Publisher: Springer Nature
ISBN: 3030743071
Category : Science
Languages : en
Pages : 179

Book Description
The mid-infrared domain is a promising optical domain because it holds two transparency atmospheric windows, as well as the fingerprint of many chemical compounds. Quantum cascade lasers (QCLs) are one of the available sources in this domain and have already been proven useful for spectroscopic applications and free-space communications. This thesis demonstrates how to implement a private free-space communication relying on mid-infrared optical chaos and this requires an accurate cartography of non-linear phenomena in quantum cascade lasers. This private transmission is made possible by the chaos synchronization of two twin QCLs. Chaos in QCLs can be generated under optical injection or external optical feedback. Depending on the parameters of the optical feedback, QCLs can exhibit several non-linear phenomena in addition to chaos. Similarities exist between QCLs and laser diodes when the chaotic dropouts are synchronized with an external modulation, and this effect is known as the entrainment phenomenon. With a cross-polarization reinjection technique, QCLs can generate all-optical square-waves. Eventually, it is possible to trigger optical extreme events in QCLs with tilted optical feedback. All these experimental results allow a better understanding of the non-linear dynamics of QCLs and will extend the potential applications of this kind of semiconductor lasers.

Broadly Tunable Terahertz Difference Frequency Generation in Mid-infrared Quantum Cascade Lasers

Broadly Tunable Terahertz Difference Frequency Generation in Mid-infrared Quantum Cascade Lasers PDF Author: Yifan Jiang (Ph. D. in electrical and computer engineering)
Publisher:
ISBN:
Category :
Languages : en
Pages : 204

Book Description
Room-temperature terahertz (THz) sources analogous to diode lasers in the near-infrared/visible or quantum cascade lasers (QCL) in the mid-infrared (mid-IR), i.e., electrically pumped, compact, widely tunable, and suitable for low-cost production, are highly desired for feasible and inexpensive THz systems. This dissertation focuses on demonstrating broadly tunable, room-temperature THz systems based on intra-cavity difference frequency generation (DFG) in mid-IR QCLs with improved spectral capability for versatile applications. Spectral control using an external cavity provides the widest tuning range and is favored for real-world applications. DFG-THz could be spectrally tuned by either tuning one mid-IR pump or by tuning both mid-IR pumps together. I built a Littrow-type, external cavity THz DFG-QCL system that generated spectral tunable THz radiation by fixing one mid-IR pump frequency with an integrated DFB grating on top of the QCL structure and tuning the other mid-IR pump frequency with an external grating, thus demonstrating record broadband narrow linewidth THz frequency tuning from 1.2 to 5.9 THz. A Cherenkov waveguide is used in this system to extract THz radiation through the semi-insulating InP substrate; however, InP has dispersion in 1–6 THz, resulting in steering far field profiles for different THz frequencies. Replacing the InP substrate with high-resistance silicon through an adhesive bonding process solved the beam steering problem of this THz DFG-QCL system. I also built a double-Littrow, external cavity DFG-THz system that tunes both mid-IR pump frequencies using two external diffraction gratings. Such a system allows performing a comprehensive spectroscopic study of the optical nonlinearity and its dependence on the mid-infrared pump frequencies. Our work shows that the terahertz generation efficiency can vary by a factor of two or more, depending on the spectral position of the mid-infrared pumps, even for a fixed THz difference frequency. Using this system, we investigated different active region designs: bound-to-continuum, continuum-to-continuum, three-phonon-resonance, and dual-upper-state active region design. Our studies show THz DFG-QCL based a bound-to-continuum active region with gain centered around 15 μm has an order of magnitude enhancement of mid-IR to THz conversion efficiency, which provides a trend for future improvement of the power performance of THz DFG-QCLs

Mid-Infrared and Terahertz Quantum Cascade Lasers

Mid-Infrared and Terahertz Quantum Cascade Lasers PDF Author: Dan Botez
Publisher: Cambridge University Press
ISBN: 1108427936
Category : Science
Languages : en
Pages : 551

Book Description
A state-of-the-art overview of this rapidly expanding field, featuring fundamental theory, practical applications, and real-life examples.

Solid-State Mid-Infrared Laser Sources

Solid-State Mid-Infrared Laser Sources PDF Author: Irina T. Sorokina
Publisher: Springer Science & Business Media
ISBN: 3540006214
Category : Science
Languages : en
Pages : 600

Book Description
The book describes the most advanced techniques for generating coherent light in the mid-infrared region of the spectrum. These techniques represent diverse areas of photonics and include heterojunction semiconductor lasers, quantum cascade lasers, tunable crystalline lasers, fiber lasers, Raman lasers, and optical parametric laser sources. Offering authoritative reviews by internationally recognized experts, the book provides a wealth of information on the essential principles and methods of the generation of coherent mid-infrared light and on some of its applications. The instructive nature of the book makes it an excellent text for physicists and practicing engineers who want to use mid-infrared laser sources in spectroscopy, medicine, remote sensing and other fields, and for researchers in various disciplines requiring a broad introduction to the subject.

Quantum Cascade Lasers

Quantum Cascade Lasers PDF Author: Jérôme Faist
Publisher: Oxford University Press
ISBN: 0198528248
Category : Science
Languages : en
Pages : 321

Book Description
This book describes the physics, fabrication technology, and applications of the quantum cascade laser.

Spectroscopic Applications of Terahertz Quantum-Cascade Lasers

Spectroscopic Applications of Terahertz Quantum-Cascade Lasers PDF Author: Tasmim Alam
Publisher: Cuvillier Verlag
ISBN: 3736962975
Category : Science
Languages : en
Pages : 132

Book Description
Quantum cascade lasers (QCLs) are attractive for high-resolution spectroscopy because they can provide high power and a narrow linewidth. They are particularly promising in the terahertz (THz) range since they can be used as local oscillators for heterodyne detection as well as transmitters for direct detection. However, THz QCL-based technologies are still under development and are limited by the lack of frequency tunability as well as the frequency and output power stability for free-running operation. In this dissertation, frequency tuning and linewidth of THz QCLs are studied in detail by using rotational spectroscopic features of molecular species. In molecular spectroscopy, the Doppler eff ect broadens the spectral lines of molecules in the gas phase at thermal equilibrium. Saturated absorption spectroscopy has been performed that allows for sub-Doppler resolution of the spectral features. One possible application is QCL frequency stabilization based on the Lamb dip. Since the tunability of the emission frequency is an essential requirement to use THz QCL for high-resolution spectroscopy, a new method has been developed that relies on near-infrared (NIR) optical excitation of the QCL rear-facet. A wide tuning range has been achieved by using this approach. The scheme is straightforward to implement, and the approach can be readily applied to a large class of THz QCLs. The frequency and output stability of the local oscillator has a direct impact on the performance and consistency of the heterodyne spectroscopy. A technique has been developed for a simultaneous stabilization of the frequency and output power by taking advantage of the frequency and power regulation by NIR excitation. The results presented in this thesis will enable the routine use of THz QCLs for spectroscopic applications in the near future.

Development of Terahertz QCLs

Development of Terahertz QCLs PDF Author: Sushil Kumar (Ph. D.)
Publisher:
ISBN:
Category :
Languages : en
Pages : 340

Book Description
The terahertz or the far-infrared frequency range of the electromagnetic spectrum (...) has historically been technologically underdeveloped despite having many potential applications, primarily due to lack of suitable sources of coherent radiation. Following on the remarkable development of mid-infrared (...) quantum-cascade lasers (QCLs) in the past decade, this thesis describes the development of electrically-pumped terahertz quantum-cascade lasers in GaAs/AlsGal_. As heterostructures that span a spectral range of 1.59 - 5.0 THz (...). A quantum-cascade laser (QCL) emits photons due to electronic intersubband transitions in the quantum-wells of a semiconductor heterostructure. The operation of terahertz QCLs at frequencies below the Reststrahlen band in the semiconductor (...), is significantly more challenging as compared to that of the mid-infrared QCLs. Firstly, due to small energy separation between the laser levels various intersubband scattering mechanisms are activated, which make it difficult to selectively depopulate the lower laser level. Additionally, as electrons gain enough kinetic energy in the upper laser level thermally activated longitudinal-optical (LO) phonon scattering reduces the level lifetime and makes it difficult to sustain population inversion at higher temperatures. Secondly, waveguide design for terahertz mode confinement is also more challenging due to higher free-carrier losses in the semiconducting doped regions at the terahertz frequencies. For successful designs reported in this work, the lower radiative state depopulation is achieved by a combination of resonant-tunneling and fast LO phonon scattering, which allow robust operation even at relatively high temperatures. An equally important enabling mechanism for these lasers is the development of metal-metal waveguides, which provide low waveguides losses, and strong mode confinement due to subwavelength mode localization in the vertical dimension. With these techniques some record performances for terahertz QCLs are demonstrated including the highest pulsed operating temperature of 169 K, the highest continuous-wave (cw) operating temperature of 117 K, and the highest optical power output (248 mW in pulsed and 138 mW in cw at 5 K) for any terahertz QCL. Towards the bigger goal of realizing a 1-THz solid-state laser to ultimately bridge the gap between electronic and optical sources of electromagnetic radiation, QCLs with a unique one-well injection scheme, which minimizes intersubband absorption losses that occur at longer wavelengths, are developed. Based on this scheme a QCL operating at 1.59 THz (A - 189 ym) is realized, which is amongst the lowest frequency solid-state lasers that operate without the assistance of a magnetic field. This thesis also reports on the development of distributed-feedback lasers in metal-metal waveguides to obtain single-mode operation, with greater output power and better beam quality. The subwavelength vertical dimension in these waveguides leads to a strongly coupled DFB action and a large reflection from the end-facets, and thus conventional coupled-mode theory is not directly applicable to the DFB design. A design technique with precise control of phase of reflection at the end-facets is developed with the aid of finite-element analysis, and with some additional unique design and fabrication methods, robust DFB operation has been obtained. Single-mode surface-emitting terahertz QCLs operating up to - 150 K are demonstrated, with different grating devices spanning a range of approximately 0.35 THz around v - 3 THz using the same gain medium. A single-lobed far-field radiation pattern, higher output power due to surface-emission, and a relatively small degradation in temperature performance compared to the Fabry-Perot ridge lasers makes these DFB lasers well suited for practical applications that are being targeted by the terahertz quantum-cascade lasers.

Fundamentals of Terahertz Devices and Applications

Fundamentals of Terahertz Devices and Applications PDF Author: Dimitris Pavlidis
Publisher: John Wiley & Sons
ISBN: 1119460719
Category : Technology & Engineering
Languages : en
Pages : 580

Book Description
An authoritative and comprehensive guide to the devices and applications of Terahertz technology Terahertz (THz) technology relates to applications that span in frequency from a few hundred GHz to more than 1000 GHz. Fundamentals of Terahertz Devices and Applications offers a comprehensive review of the devices and applications of Terahertz technology. With contributions from a range of experts on the topic, this book contains in a single volume an inclusive review of THz devices for signal generation, detection and treatment. Fundamentals of Terahertz Devices and Applications offers an exploration and addresses key categories and aspects of Terahertz Technology such as: sources, detectors, transmission, electronic considerations and applications, optical (photonic) considerations and applications. Worked examplesbased on the contributors extensive experience highlight the chapter material presented. The text is designed for use by novices and professionals who want a better understanding of device operation and use, and is suitable for instructional purposes This important book: Offers the most relevant up-to-date research information and insight into the future developments in the technology Addresses a wide-range of categories and aspects of Terahertz technology Includes material to support courses on Terahertz Technology and more Contains illustrative worked examples Written for researchers, students, and professional engineers, Fundamentals of Terahertz Devices and Applications offers an in-depth exploration of the topic that is designed for both novices and professionals and can be adopted for instructional purposes.