Micromechanics Based Simulation of Ductile Fracture in Structural Steels PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Micromechanics Based Simulation of Ductile Fracture in Structural Steels PDF full book. Access full book title Micromechanics Based Simulation of Ductile Fracture in Structural Steels by Ravi Kiran Yellavajjala. Download full books in PDF and EPUB format.

Micromechanics Based Simulation of Ductile Fracture in Structural Steels

Micromechanics Based Simulation of Ductile Fracture in Structural Steels PDF Author: Ravi Kiran Yellavajjala
Publisher:
ISBN:
Category :
Languages : en
Pages : 380

Book Description


Micromechanics Based Simulation of Ductile Fracture in Structural Steels

Micromechanics Based Simulation of Ductile Fracture in Structural Steels PDF Author: Ravi Kiran Yellavajjala
Publisher:
ISBN:
Category :
Languages : en
Pages : 380

Book Description


Micro-mechanical Simulation of Ductile Fracture Processes in Structural Steel

Micro-mechanical Simulation of Ductile Fracture Processes in Structural Steel PDF Author: Ryan James Cooke
Publisher:
ISBN: 9781339542324
Category :
Languages : en
Pages :

Book Description
The micro-mechanics based approach to the study of ductile fracture has successfully overcome many of the limitations (such as large scale material yielding, cyclic loading, and size/scale dependence of J) of traditional fracture mechanics approaches (i.e. K, J and CTOD's). A number of the currently available micro-mechanics models (i.e. SMCS, Hancock and McKenzie, 1975; VGM, Kanvinde and Deierlein, 2006) predict fracture accurately under high triaxiality and axisymmetric conditions; however, the mentioned conditions do not encompass the full range of stress states (including low-triaxiality or non-axisymmetric conditions) which are relevant to the structural, mechanical and aerospace industries. As such, the primary objective of the work presented in this dissertation is to inform the development of a more general damage model which is applicable to a broader range of stress states and seismic (i.e. cyclic) loading which can result in ultra-low cycle fatigue (ULCF) failures. New model development is realized through a collaborative multi-scale approach which combines the results of an extensive test series (Smith, 2014) and a series of computational void simulations. To probe the full range of practical stress/loading conditions, a more general finite element (FE) framework for simulating the response of micro-voids is developed. The new void cell framework and the results of the 146 void simulations comprise the primary body of work presented in this dissertation. The void simulations can be divided into two groups: (1) those which effectively simulate an array of voids while modeling a representative void cell, and (2) those which explicitly model an array of voids. Void growth rates measured from the single void model (SVM) are used to inform the selection of a new functional form for the damage model presented in this dissertation while the multi-void model (MVM) provides qualitative and quantitative insights regarding localized deformation between neighboring voids. Findings from the MVM simulations are (1) in agreement with observations obtained from sectioned images (Smith, 2014) of fracture coupons that expose undergrown voids in the near vicinity of the failure surface and (2) are used to develop a strain-based indicator for localization initiation that shows strong agreement with failure strains observed from coupon scale tests (Myers, 2009). Moreover, the trends observed from both model types indicate that there is minimal void growth and that localization does not occur at low triaxialities. Both finding suggest that an alternate fracture mechanism than the traditionally excepted 'growth to coalescence' mechanism is active under these conditions. Despite the power of micro-mechanics based models, the ability to arrive at accurate fracture predictions is contingent on the calibration of the parameters which define the material constitutive response. The capability for complementary FE simulations to reproduce the force-displacement response obtained from physical tests (which is typically relied upon for model calibration) provides a false sense of security and neglects issues (i.e. non-uniqueness of the model parameter set) associated with model over-fitting. To investigate the susceptibility of typical calibration approaches to result in non-unique fits, a simple example is employed. Results of the example demonstrate that (1) multiple (and therefore non-unique) parameter sets may adequately reproduce the force-displacement response of typical calibration specimen and (2) that local plastic strains (often used to evaluate local fracture criteria) can result in error more than 65% despite agreement with the calibration metric. Thus, selection of parameter sets based solely on qualitative agreement between test data and complementary simulations can lead to erroneous results when evaluating material resistance to fracture.

Ductile Fracture in Metal Forming

Ductile Fracture in Metal Forming PDF Author: Kazutake Komori
Publisher: Academic Press
ISBN: 0128147733
Category : Technology & Engineering
Languages : en
Pages : 294

Book Description
Ductile Fracture in Metal Forming: Modeling and Simulation examines the current understanding of the mechanics and physics of ductile fracture in metal forming processes while also providing an approach to micromechanical ductile fracture prediction that can be applied to all metal forming processes. Starting with an overview of different ductile fracture scenarios, the book then goes on to explain modeling techniques that predict a range of mechanical phenomena that can lead to ductile fracture. The challenges in creating micromechanical models are addressed alongside methods of applying these models to several common metal forming processes. This book is suitable for researchers working in mechanics of materials, metal forming, mechanical metallurgy, and plasticity. Engineers in R&D industries involved in metal forming such as manufacturing, aerospace, and automation will also find the book very useful. Explains innovative micromechanical modeling techniques for a variety of material behaviors Examines how these models can be applied to metal forming processes in practice, including blanking, arrowed cracks in drawing, and surface cracks in upset forging Provides a thorough examination of both macroscopic and microscopic ductile fracture theory

Ultra-low-Cycle Fatigue Failure of Metal Structures under Strong Earthquakes

Ultra-low-Cycle Fatigue Failure of Metal Structures under Strong Earthquakes PDF Author: Liang-Jiu Jia
Publisher: Springer
ISBN: 9811326614
Category : Science
Languages : en
Pages : 231

Book Description
This book presents experimental results and theoretical advances in the field of ultra-low-cycle fatigue failure of metal structures under strong earthquakes, where the dominant failure mechanism is ductile fracture. Studies on ultra-low-cycle fatigue failure of metal materials and structures have caught the interest of engineers and researchers from various disciplines, such as material, civil and mechanical engineering. Pursuing a holistic approach, the book establishes a fundamental framework for this topic, while also highlighting the importance of theoretical analysis and experimental results in the fracture evaluation of metal structures under seismic loading. Accordingly, it offers a valuable resource for undergraduate and graduate students interested in ultra-low-cycle fatigue, researchers investigating steel and aluminum structures, and structural engineers working on applications related to cyclic large plastic loading conditions.

Studies on Strain Localization, Ductile Fracture and Damage in Structural Metals

Studies on Strain Localization, Ductile Fracture and Damage in Structural Metals PDF Author: Yazhi Zhu
Publisher:
ISBN:
Category :
Languages : en
Pages : 666

Book Description
One of the most important limit states in structural metals is ductile fracture, and the prediction of ductile fracture is of great importance in many engineering applications. The overall objective of the research reported in this dissertation is to advance the understanding and modeling of ductile fracture in metals. This research addresses three main issues: micromechanical modeling of ductile fracture, the development of a micromechanics-based ductile fracture model and its numerical implementation, and a numerical investigation of geometry and damage induced strain localization based on a nonlocal formulation. It has long been recognized that stress triaxiality is a key parameter affecting initiation of ductile fracture. More recently, shear stress has been identified as another important parameter, in addition to stress triaxiality, that influences the process of ductile fracture. In this research, a micromechanics-based model is proposed for predicting initiation of ductile fracture that couples both stress triaxiality and shear stress. The new model is based on a combination of the existing Rice-Tracey and modified maximum shear stress models. The new model is applied to construct the fracture locus of different types of metal alloys and is used to predict fracture initiation by numerical tools. The predicted results are in good agreement with experimental data reported in literature that covers a wide range of triaxialities and shear stress. Another portion of this research, within the framework of micromechanics, investigated the effect of combined normal and shear stress components on micro-void evolution and material behavior. This work involved finite element modeling of a cubic unit cell associated with a spherical void. The results show that the void growth process and macroscopic stress-strain response is highly dependent on the shear stress component. At different ranges of triaxialities, and with different void growth and coalescence mechanisms, shear stress has an important effect on the ductile fracture process. Numerical modeling of strain localization in ductile metals based on standard continuum mechanics exhibits non-convergent mesh sensitivity. This issue is addressed in the final portion of this research. A one-dimensional model based on the nonlocal theory is proposed to analyze geometry-induced strain localization, i.e., necking in structural metals. A nonlocal continuum damage model using the same enhanced continuum law is developed to deal with the damage induced strain localization in metals. Both models provide encouraging performance in eliminating the non-convergent mesh sensitivity problem. Such improved strain localization modeling techniques show potential to be useful for further exploration of ductile fracture phenomena.

Fracture and Fatigue Control in Structures

Fracture and Fatigue Control in Structures PDF Author: John M. Barsom
Publisher:
ISBN: 9780803145412
Category : Electronic books
Languages : en
Pages : 0

Book Description
Annotation An introduction for practicing engineers or students at the beginning graduate or advanced undergraduate level, emphasizing the application of fracture mechanics to preventing fracture and fatigue failures in structures, rather than the theoretical aspects of the field. The topics include stress analysis for members with cracks, resistance forces, fatigue crack initiation, and fitness for service. Among the case studies are bridges, oil tankers, and steel casings. The earlier editions were in 1977 and 1987. Annotation copyrighted by Book News, Inc., Portland, OR.

Micromechanics and Nanosimulation of Metals and Composites

Micromechanics and Nanosimulation of Metals and Composites PDF Author: Siegfried Schmauder
Publisher: Springer Science & Business Media
ISBN: 3540786783
Category : Technology & Engineering
Languages : en
Pages : 432

Book Description
The strength of metallic materials determines the usability and reliability of all the machines, tools and equipment around us. Yet, the question about which mechanisms control the strength and damage resistance of materials and how they can be optimised remains largely unanswered. How do real, heterogeneous ma- rials deform and fail? Why can a small modification of the microstructure increase the strength and damage resistance of materials manifold? How can the strength of heterogeneous materials be predicted? The purpose of this book is to present different experimental and computational analysis methods of micromechanics of damage and strength of materials and to demonstrate their applications to various micromechanical problems. This book summarizes at a glance some of the publications of the Computational Mechanics Group at the IMWF/MPA Stuttgart, dealing with atomistic, micro- and meso- chanical modelling and experimental analysis of strength and damage of metallic materials. In chapter 1, the micromechanisms of damage and fracture in different groups of materials are investigated experimentally, using direct observations and inverse analysis. The interaction of microstructural elements with the evolving damage is studied in these experiments. Chapter 2 presents different approaches to the - cromechanical simulation of composite materials: embedded unit cells, multiphase finite elements and multiparticle unit cells. Examples of the application of these models to the analysis of deformation and damage in different materials are given. Chapter 3 deals with the methods of numerical modelling of damage evolution and crack growth in heterogeneous materials.

Duplex Stainless Steels

Duplex Stainless Steels PDF Author: R Gunn
Publisher: Woodhead Publishing
ISBN: 9781855733183
Category : Science
Languages : en
Pages : 220

Book Description
Two very successful conferences - in Glasgow and Beaune - were held on duplex stainless steels during the first half of the '90s. This book takes keynote papers from each, and develops and expands them to bring the topics right up to date. There is new material to cover grades, specifications and standards, and the book is fully cross-references and indexed. The first reference book to be published on the increasingly popular duplex stainless steels, it will be widely welcomed by metallurgists, design and materials engineers, oil and gas engineers and anyone involved in materials development and properties. The first reference book on this relatively new engineering material Based on keynote papers from major international contributors Covers grades, standards and specifications

Micromechanics Modelling of Ductile Fracture

Micromechanics Modelling of Ductile Fracture PDF Author: Zengtao Chen
Publisher: Springer Science & Business Media
ISBN: 9400760981
Category : Science
Languages : en
Pages : 335

Book Description
This book summarizes research advances in micromechanics modeling of ductile fractures made in the past two decades. The ultimate goal of this book is to reach manufacturing frontline designers and materials engineers by providing a user-oriented, theoretical background of micromechanics modeling. Accordingly, the book is organized in a unique way, first presenting a vigorous damage percolation model developed by the authors over the last ten years. This model overcomes almost all difficulties of the existing models and can be used to completely accommodate ductile damage developments within a single-measure microstructure frame. Related void damage criteria including nucleation, growth and coalescence are then discussed in detail: how they are improved, when and where they are used in the model, and how the model performs in comparison with the existing models. Sample forming simulations are provided to illustrate the model’s performance.

The Micromechanics of Fracture of Pearlitic Structural Steels

The Micromechanics of Fracture of Pearlitic Structural Steels PDF Author: Peter John Guest
Publisher:
ISBN:
Category :
Languages : en
Pages : 298

Book Description