Microgravity Two-phase Flow and Heat Transfer PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Microgravity Two-phase Flow and Heat Transfer PDF full book. Access full book title Microgravity Two-phase Flow and Heat Transfer by Kamiel S. Gabriel. Download full books in PDF and EPUB format.

Microgravity Two-phase Flow and Heat Transfer

Microgravity Two-phase Flow and Heat Transfer PDF Author: Kamiel S. Gabriel
Publisher: Springer Science & Business Media
ISBN: 1402051433
Category : Technology & Engineering
Languages : en
Pages : 252

Book Description
Multiphase thermal systems have numerous applications in aerospace, heat-exchange, transport of contaminants in environmental systems, and energy transport and conversion systems. A reduced - or microgravity - environment provides an excellent tool for accurate study of the flow without the masking effects of gravity. This book presents for the first time a comprehensive coverage of all aspects of two-phase flow behaviour in the virtual absence of gravity.

Microgravity Two-phase Flow and Heat Transfer

Microgravity Two-phase Flow and Heat Transfer PDF Author: Kamiel S. Gabriel
Publisher: Springer Science & Business Media
ISBN: 1402051433
Category : Technology & Engineering
Languages : en
Pages : 252

Book Description
Multiphase thermal systems have numerous applications in aerospace, heat-exchange, transport of contaminants in environmental systems, and energy transport and conversion systems. A reduced - or microgravity - environment provides an excellent tool for accurate study of the flow without the masking effects of gravity. This book presents for the first time a comprehensive coverage of all aspects of two-phase flow behaviour in the virtual absence of gravity.

Design Manual for Microgravity Two-Phase Flow and Heat Transfer

Design Manual for Microgravity Two-Phase Flow and Heat Transfer PDF Author: Christopher J. Crowley
Publisher:
ISBN:
Category :
Languages : en
Pages : 143

Book Description
This report documents two-phase fluid flow and heat transfer methods for microgravity environments. The applications of the work are thermal management, propulsion, and fluid storage and transfer systems for spacecraft. In the near future, these systems will include two-phase, vapor-liquid flows. This Design Manual is intended for use by designers of these systems. Design methods are presented for predicting two-phase flow regimes and pressure drops in pipe flows from earth gravity to microgravity conditions. Forced convection boiling heat transfer methods for pipes with uniform heat flux are included. Also included are methods for analyzing high-vapor-shear condensation in pipes. The analysis methods are mechanistic; that is, based upon fundamental physical principles which should apply to heat transfer liquids with Pr approx = 1 and scale with pipe size and fluid properties. This Manual incorporates simplified methods (easy-to-use design charts), detailed descriptions of the analysis methods, comparisons with existing microgravity data, and recommended approaches to quantify the range of uncertainty in design calculations. Keywords: Fluid flow; Heat transfer; Space technology; Spacecraft components; Thermodynamics; Two phase flow. (jhd).

Microgravity Two-phase Flow and Heat Transfer

Microgravity Two-phase Flow and Heat Transfer PDF Author: A. A. M. Delil
Publisher:
ISBN:
Category :
Languages : en
Pages : 23

Book Description


Two-phase Flow Heat Transfer Under Microgravity Condition

Two-phase Flow Heat Transfer Under Microgravity Condition PDF Author: M. Parang
Publisher:
ISBN:
Category :
Languages : en
Pages :

Book Description


Microgravity Liquid-gas Two-phase Flow

Microgravity Liquid-gas Two-phase Flow PDF Author: Ramaswamy Balasubramaniam
Publisher:
ISBN:
Category :
Languages : en
Pages : 52

Book Description


Bubble Dynamics, Two-Phase Flow, and Boiling Heat Transfer in Microgravity

Bubble Dynamics, Two-Phase Flow, and Boiling Heat Transfer in Microgravity PDF Author: National Aeronautics and Space Administration (NASA)
Publisher: Createspace Independent Publishing Platform
ISBN: 9781723536205
Category :
Languages : en
Pages : 292

Book Description
This report contains two independent sections. Part one is titled Terrestrial and Microgravity Pool Boiling Heat Transfer and Critical heat flux phenomenon in an acoustic standing wave. Terrestrial and microgravity pool boiling heat transfer experiments were performed in the presence of a standing acoustic wave from a platinum wire resistance heater using degassed FC-72 Fluorinert liquid. The sound wave was created by driving a half wavelength resonator at a frequency of 10.15 kHz. Microgravity conditions were created using the 2.1 second drop tower on the campus of Washington State University. Burnout of the heater wire, often encountered with heat flux controlled systems, was avoided by using a constant temperature controller to regulate the heater wire temperature. The amplitude of the acoustic standing wave was increased from 28 kPa to over 70 kPa and these pressure measurements were made using a hydrophone fabricated with a small piezoelectric ceramic. Cavitation incurred during experiments at higher acoustic amplitudes contributed to the vapor bubble dynamics and heat transfer. The heater wire was positioned at three different locations within the acoustic field: the acoustic node, antinode, and halfway between these locations. Complete boiling curves are presented to show how the applied acoustic field enhanced boiling heat transfer and increased critical heat flux in microgravity and terrestrial environments. Video images provide information on the interaction between the vapor bubbles and the acoustic field. Part two is titled, Design and qualification of a microscale heater array for use in boiling heat transfer. This part is summarized herein. Boiling heat transfer is an efficient means of heat transfer because a large amount of heat can be removed from a surface using a relatively small temperature difference between the surface and the bulk liquid. However, the mechanisms that govern boiling heat transfer are not well understood. Measurements of wall te...

Encyclopedia Of Two-phase Heat Transfer And Flow Ii: Special Topics And Applications (A 4-volume Set)

Encyclopedia Of Two-phase Heat Transfer And Flow Ii: Special Topics And Applications (A 4-volume Set) PDF Author: John R Thome
Publisher: World Scientific
ISBN: 9814623296
Category : Technology & Engineering
Languages : en
Pages : 1321

Book Description
The aim of the two-set series is to present a very detailed and up-to-date reference for researchers and practicing engineers in the fields of mechanical, refrigeration, chemical, nuclear and electronics engineering on the important topic of two-phase heat transfer and two-phase flow. The scope of the first set of 4 volumes presents the fundamentals of the two-phase flows and heat transfer mechanisms, and describes in detail the most important prediction methods, while the scope of the second set of 4 volumes presents numerous special topics and numerous applications, also including numerical simulation methods.Practicing engineers will find extensive coverage to applications involving: multi-microchannel evaporator cold plates for electronics cooling, boiling on enhanced tubes and tube bundles, flow pattern based methods for predicting boiling and condensation inside horizontal tubes, pressure drop methods for singularies (U-bends and contractions), boiling in multiport tubes, and boiling and condensation in plate heat exchangers. All of these chapters include the latest methods for predicting not only local heat transfer coefficients but also pressure drops.Professors and students will find this 'Encyclopedia of Two-Phase Heat Transfer and Flow' particularly exciting, as it contains authored books and thorough state-of-the-art reviews on many basic and special topics, such as numerical modeling of two-phase heat transfer and adiabatic bubbly and slug flows, the unified annular flow boiling model, flow pattern maps, condensation and boiling theories, new emerging topics, etc.

Studies of Two-Phase Flow Dynamics and Heat Transfer at Reduced Gravity Conditions

Studies of Two-Phase Flow Dynamics and Heat Transfer at Reduced Gravity Conditions PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 44

Book Description


Physics of Fluids in Microgravity

Physics of Fluids in Microgravity PDF Author: Rodolfo Monti
Publisher: CRC Press
ISBN: 9780415275811
Category : Science
Languages : en
Pages : 630

Book Description
In a microgravity experiment, the conditions prevalent in fluid phases can be substantially different from those on the ground and can be exploited to improve different processes. Fluid physics research in microgravity is important for the advancement of all microgravity scients: life, material, and engineering. Space flight provides a unique laboratory that allows scientists to improve their understanding of the behaviour of fluids in low gravity, allowing the investigation of phenomena and processes normally masked by the effects of gravity and thus difficult to study on Earth. Physics of Fluids in Microgravity provides a clear view of recent research and progress in the different fields of fluid research in space. The topics presented include bubles and drops dynamics, Maragoni flows, diffustion and thermodiffusion, solidfication,a nd crystal growth. The results obtained so far are, in some cases, to be confirmed by extensive research activities on the International Space station, where basic and applied microgravity experimentation will take place in the years to come.

Cryogenic Two-phase Flow and Phase-change Heat Transfer in Microgravity

Cryogenic Two-phase Flow and Phase-change Heat Transfer in Microgravity PDF Author: Cheng-Feng Tai
Publisher:
ISBN:
Category :
Languages : en
Pages :

Book Description
The Cut-cell approach is applied to handle nonrectangular cells cut by the interfacesand boundaries in SIMCC. With the Cut-cell approach, the conservative properties can be maintained better near the interface. This research will focus on developing the numerical techniques to simulate the two-phase flow and phase change phenomena for one of the major flow patterns in film boiling, the inverted annular flow.