Microfluidic Reactors for Polymer Particles

Microfluidic Reactors for Polymer Particles PDF Author: Eugenia Kumacheva
Publisher: John Wiley & Sons
ISBN: 1119990289
Category : Technology & Engineering
Languages : en
Pages : 302

Book Description
The manipulation of fluids in channels with dimensions in the range from tens to hundreds of micrometers – microfluidics – has recently emerged as a new field of science and technology. Microfluidics has applications spanning analytical chemistry, organic and inorganic synthesis, cell biology, optics and information technology. One particularly promising application is the microfluidic synthesis of polymer particles with precisely controlled dimensions, and a variety of shapes, morphologies and compositions. Written as a comprehensive introduction for scientists and engineers working in microfabrication and microfluidics, Microfluidic Reactors for Polymer Particles covers topics such as: Applications and methods of generation of polymer particles Physics of microfluidic emulsification Formation of droplets in microfluidic systems High-throughput microfluidic systems for formation of droplets Microfluidic production of polymer particles and hydrogel particles Polymer capsules Synthesis of polymer particles with non-conventional shapes This book is intended for a broad audience, including students, researchers and engineers in industry, with interests in physics, chemistry, materials science, engineering or biotechnology.

Continuous Microfluidic Reactors for Polymer Particles

Continuous Microfluidic Reactors for Polymer Particles PDF Author: Minseok Seo
Publisher:
ISBN: 9780494446959
Category : Materials science
Languages : en
Pages : 314

Book Description
In this thesis, we present a versatile new method for preparing highly monodisperse droplets, polymer particles, double emulsions, and self-assemblies of droplets in continuous microfluidic reactors. Recently, microfluidic systems are significantly being used in many areas of chemistry and biotechnology to achieve improved performance. Microfluidics provides the ability to automate highly repetitive laboratory tasks by replacing huge cumbersome equipment with miniaturized and integrated systems, and it enables the handling of small amounts, e.g., from microliters to femtoliters of fluids, reactants and products. These methods have the following useful features: (1) the generation of extremely monodisperse droplets, (2) the generation and control of both the shape and the size of the droplets, (3) the use of a wide variety of materials, including: gels, monomers, polymers, copolymers, and polymers doped with functional additives, (4) a possibility of in situ solidification of the droplets by means of photopolymerization and/or thermopolymerization, and (5) the ability to scale up the production of large quantities of particles. We focus on the effect of the properties of the disperse and continuous phases on the emulsification process, the effect of the polymerization rate on the production of high-quality particles, the role of the material and geometry of the microfluidic device in droplet formation, and the synthesis of particles with different shapes and compositions.

Microfluidic Approaches to the Synthesis of Complex Polymeric Particles

Microfluidic Approaches to the Synthesis of Complex Polymeric Particles PDF Author: Dhananjay Dendukuri
Publisher:
ISBN:
Category :
Languages : en
Pages : 128

Book Description
(Cont.) A third approach to synthesizing particles uses elastomeric phase masks to build all-PDMS devices. Coherent laser light passing through a phase mask generates a complex 3D distribution of intensity that selectively exposes certain regions while leaving out others. This results in the formation of 3-D structures whose features can be tuned at the micron scale and below. We have attempted the formation of 3-D structures in hydrogel polymers which could have important implications in the field of tissue engineering. Finally, we have developed a simple model of the oxygen inhibited polymerization that occurs in flow lithography. This model is able to qualitatively predict the presence of a thin, uncrosslinked layer of oligomer close to the walls of the PDMS device. This layer is critical to our ability to flow out particles in flow lithography. This thesis demonstrates that microfluidics is indeed a viable and promising route to the synthesis of complex polymeric particles and structures.

Microfluidic Fabrication of Polymer-Based Microparticles for Biomedical Applications

Microfluidic Fabrication of Polymer-Based Microparticles for Biomedical Applications PDF Author: Tiantian Kong
Publisher: Open Dissertation Press
ISBN: 9781361330951
Category :
Languages : en
Pages :

Book Description
This dissertation, "Microfluidic Fabrication of Polymer-based Microparticles for Biomedical Applications" by Tiantian, Kong, 孔湉湉, was obtained from The University of Hong Kong (Pokfulam, Hong Kong) and is being sold pursuant to Creative Commons: Attribution 3.0 Hong Kong License. The content of this dissertation has not been altered in any way. We have altered the formatting in order to facilitate the ease of printing and reading of the dissertation. All rights not granted by the above license are retained by the author. Abstract: Delivery vehicles that can encapsulate and release active ingredients of pre-determined volumes at the target site on-demand present a challenge in biomedical field. Due to their tunable physiochemical properties and degradation rate, polymeric particles are one of the most extensively employed delivery vehicles. Generally they are fabricated from emulsion templates. Conventional bulk emulsification technique provides little control over the characteristics of droplets generated. Thus the properties of the subsequent particles cannot be controlled. The advance of droplet microfluidics enables the generation and manipulation of designer single, double or higher-order emulsion droplets with customizable structure. These droplets are powerful and versatile templates for fabricating polymeric delivery vehicles with pre-determined properties. Due to the monodispersity of droplet templates by microfluidics, the relationship between size, size distribution, shape, architecture, elastic responses and release kinetics can be systematically studied. These understandings are of key importance for the design and fabrication of the next generation polymeric delivery vehicles with custom-made functions for specific applications. In the present work, we engineer the droplet templates generated from microfluidics to fabricate designer polymeric microparticles as delivery vehicles. We investigate and obtain the relationship between the particle size, size distribution, structure of microparticles and their release kinetics. Moreover, we also identify an innovative route to tune the particle shape that enables the investigation of the relationship between particle shape and release kinetics. We take advantage of the dewetting phenomena driving by interfacial tensions of different liquid phases to vary the droplet shape. We find that the phase-separation-induced shape variation of polymeric composite particles can be engineered by manipulating the kinetic barriers during droplet shape evolution. To predict the performance of our advanced polymer particles in practical applications, for instance, in narrow blood vessels in vivo, we also develop a novel capillary micromechanics technique to characterize the linear and non-linear elastic response of our polymer particles on single particle level. The knowledge of the mechanical properties enables the prediction as well as the design of the mechanical aspects of polymer particles in different applications. The ability to control and design the physical, chemical, mechanical properties of the delivery vehicles, and the understanding between these properties and the biological functionalities of delivery vehicles, such as the release kinetics, lead towards tailor-designed delivery vehicles with finely-designed functionalities for various biomedical applications. Our proposed electro-microfluidic platform potentially enables generation of submicron droplet templates with a narrow size distribution and nanoscaled delivery vehicles with well-controlled properties, leading to a next generation of intracellular delivery vehicles. Microfluidic-based technique has the potential to be scaled up by parallel operation. Therefore, we are well-equipped for the massive production of custom-made droplet templates of both micron-size and nanosized, and we can design the physiochemical properties and biological functionalities of the delivery vehicle

Polymer Reaction Engineering of Dispersed Systems

Polymer Reaction Engineering of Dispersed Systems PDF Author: Werner Pauer
Publisher: Springer
ISBN: 3319734792
Category : Technology & Engineering
Languages : en
Pages : 218

Book Description
The series Advances in Polymer Science presents critical reviews of the present and future trends in polymer and biopolymer science. It covers all areas of research in polymer and biopolymer science including chemistry, physical chemistry, physics, material science.The thematic volumes are addressed to scientists, whether at universities or in industry, who wish to keep abreast of the important advances in the covered topics.Advances in Polymer Science enjoys a longstanding tradition and good reputation in its community. Each volume is dedicated to a current topic, and each review critically surveys one aspect of that topic, to place it within the context of the volume. The volumes typically summarize the significant developments of the last 5 to 10 years and discuss them critically, presenting selected examples, explaining and illustrating the important principles, and bringing together many important references of primary literature. On that basis, future research directions in the area can be discussed. Advances in Polymer Science volumes thus are important references for every polymer scientist, as well as for other scientists interested in polymer science - as an introduction to a neighboring field, or as a compilation of detailed information for the specialist.Review articles for the individual volumes are invited by the volume editors. Single contributions can be specially commissioned.Readership: Polymer scientists, or scientists in related fields interested in polymer and biopolymer science, at universities or in industry, graduate students

Microfluidics for Advanced Functional Polymeric Materials

Microfluidics for Advanced Functional Polymeric Materials PDF Author: Liang-Yin Chu
Publisher: John Wiley & Sons
ISBN: 3527803653
Category : Technology & Engineering
Languages : en
Pages : 459

Book Description
A comprehensive and systematic treatment of our current understanding of the microfluidic technique and its advantages in the controllable fabrication of advanced functional polymeric materials. Introducing and summarizing recent advances and achievements in the field, the authors cover the design and fabrication of microfluidic devices, the fundamentals and strategies for controllable microfluidic generation of multiphase liquid systems, and the use of these liquid systems with an elaborate combination of their structures and compositions for generating novel polymer materials, such as microcapsules, microfibers, valves, and membranes. Clear diagrams and illustrations throughout the text make the relevant theory and technologies more readily accessible. The result is a specialist reference for materials scientists, organic, polymer and physical chemists, and chemical engineers.

Polymeric Gels

Polymeric Gels PDF Author: Kunal Pal
Publisher: Woodhead Publishing
ISBN: 0081021801
Category : Technology & Engineering
Languages : en
Pages : 568

Book Description
Polymeric Gels: Characterization, Properties and Biomedical Applications covers the fundamentals and applications of polymeric gels. Particular emphasis is given to their synthesis, properties and characteristics, with topics such as natural, synthetic, and smart polymeric gels, medical applications, and advancements in conductive and magnetic gels presented. The book covers the basics and applications of hydrogels, providing readers with a comprehensive guide on the types of polymeric gels used in the field of biomedical engineering. Provides guidance for decisions on the suitability and appropriateness of a synthetic route and characterization technique for particular polymeric networks Analyzes and compares experimental data Presents in-depth information on the physical properties of polymeric gels using mathematical models Uses an interdisciplinary approach to discuss potential new applications for both established polymeric gels and recent advances

Nanomaterials: A Danger or a Promise?

Nanomaterials: A Danger or a Promise? PDF Author: Roberta Brayner
Publisher: Springer Science & Business Media
ISBN: 1447142136
Category : Technology & Engineering
Languages : en
Pages : 398

Book Description
With the increased presence of nanomaterials in commercial products such as cosmetics and sunscreens, fillers in dental fillings, water filtration process, catalysis, photovoltaic cells, bio-detection, a growing public debate is emerging on toxicological and environmental effects of direct and indirect exposure to these materials. Nanomaterials: A Danger or a Promise? forms a balanced overview of the health and environmental issues of nanoscale materials. By considering both the benefits and risks associated with nanomaterials, Nanomaterials: A Danger or a Promise? compiles a complete and detailed image of the many aspects of the interface between nanomaterials and their real-life application. The full cycle of nanomaterials life will be presented and critically assessed to consider and answer questions such as: How are nanomaterials made? What they are used for? What is their environmental fate? Can we make them better? Including coverage of relevant aspects about the toxicity of manufactured nanomaterials, nanomaterials life cycle, exposure issues, Nanomaterials: A Danger or a Promise? provides a comprehensive overview of the actual knowledge in these fields but also presents perspectives for the future development of a safer nanoscience. This comprehensive resource is a key reference for students, researcher, manufacturers and industry professionals alike.

Microchemical Engineering in Practice

Microchemical Engineering in Practice PDF Author: Thomas Dietrich
Publisher: John Wiley & Sons
ISBN: 1118215990
Category : Technology & Engineering
Languages : en
Pages : 480

Book Description
Microchemical Engineering in Practice provides the information chemists and engineers need to evaluate the use of microreactors, covering the technical, operational, and economic considerations for various applications. It explains the systems needed to use microreactors in production and presents examples of microreactor use in different chemistries, including larger scale production processes. There are guidelines on calculating the costs and the risks of production using continuous flow microreactors. Complete with case studies, this is an essential guide for chemists and engineers interested in investigating the advantages of chemical microreactors.

Insights and Advancements in Microfluidics

Insights and Advancements in Microfluidics PDF Author: Weihua Li
Publisher: MDPI
ISBN: 3038425168
Category : Electronic book
Languages : en
Pages : 295

Book Description
This book is a printed edition of the Special Issue "Insights and Advancements in Microfluidics" that was published in Micromachines