Microfluidic Organ-on-a-Chip: Revolutionary Platforms for Disease Comprehension and Treatment PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Microfluidic Organ-on-a-Chip: Revolutionary Platforms for Disease Comprehension and Treatment PDF full book. Access full book title Microfluidic Organ-on-a-Chip: Revolutionary Platforms for Disease Comprehension and Treatment by Shi-Cong Tao. Download full books in PDF and EPUB format.

Microfluidic Organ-on-a-Chip: Revolutionary Platforms for Disease Comprehension and Treatment

Microfluidic Organ-on-a-Chip: Revolutionary Platforms for Disease Comprehension and Treatment PDF Author: Shi-Cong Tao
Publisher: Frontiers Media SA
ISBN: 2889740285
Category : Science
Languages : en
Pages : 176

Book Description
Existing culture systems have a limited ability to reproduce the complicated and dynamic microenvironment of a functioning organ. To solve the issues of conventional culture techniques, multidisciplinary researchers, involving medical doctors, stem cell and developmental biology experts, engineers and physical scientists, have emerged to innovate methods and devices. A microfluidic organ-on-a-chip (μOOC) is a cell culture device, based on microfluidic technology, which contains continuously perfused chambers with cells to simulate organ-level physiology/pathology. The μOOC is not to build a whole living organ, but rather to synthesize minimal functional units that recapitulate organ-/tissue-level functions. The μOOC can be applied to study not only the convention stimulation on cells by molecular/drugs, but also physical forces (fluid shear stress, cyclic strain and mechanical compression), organ-specific cell-cell intercommunication, and organ-organ coupling responses. There is an emerging need for innovative approaches for the production, control, analysis, and utilization of the μOOC, and even the multiple interconnected μOOC (Human-on-a-Chip). Although the μOOC has attracted much attention and is continuous being studied, there are still many difficult problems to be solved. Some of the most mentioned challenges include microenvironmental (biochemical, biophysical, biomechanical, nutrient, etc.) control, modeling tissue–tissue and multiorgan interactions, and reducing variability (automated control, high-throughput manipulation/analysis, integration of biosensing and etc.).

Microfluidic Organ-on-a-Chip: Revolutionary Platforms for Disease Comprehension and Treatment

Microfluidic Organ-on-a-Chip: Revolutionary Platforms for Disease Comprehension and Treatment PDF Author: Shi-Cong Tao
Publisher: Frontiers Media SA
ISBN: 2889740285
Category : Science
Languages : en
Pages : 176

Book Description
Existing culture systems have a limited ability to reproduce the complicated and dynamic microenvironment of a functioning organ. To solve the issues of conventional culture techniques, multidisciplinary researchers, involving medical doctors, stem cell and developmental biology experts, engineers and physical scientists, have emerged to innovate methods and devices. A microfluidic organ-on-a-chip (μOOC) is a cell culture device, based on microfluidic technology, which contains continuously perfused chambers with cells to simulate organ-level physiology/pathology. The μOOC is not to build a whole living organ, but rather to synthesize minimal functional units that recapitulate organ-/tissue-level functions. The μOOC can be applied to study not only the convention stimulation on cells by molecular/drugs, but also physical forces (fluid shear stress, cyclic strain and mechanical compression), organ-specific cell-cell intercommunication, and organ-organ coupling responses. There is an emerging need for innovative approaches for the production, control, analysis, and utilization of the μOOC, and even the multiple interconnected μOOC (Human-on-a-Chip). Although the μOOC has attracted much attention and is continuous being studied, there are still many difficult problems to be solved. Some of the most mentioned challenges include microenvironmental (biochemical, biophysical, biomechanical, nutrient, etc.) control, modeling tissue–tissue and multiorgan interactions, and reducing variability (automated control, high-throughput manipulation/analysis, integration of biosensing and etc.).

Highlights from Frontiers in Bioengineering and Biotechnology in 2020

Highlights from Frontiers in Bioengineering and Biotechnology in 2020 PDF Author: Ranieri Cancedda
Publisher: Frontiers Media SA
ISBN: 2889710793
Category : Science
Languages : en
Pages : 159

Book Description
Frontiers in Bioengineering and Biotechnology has evolved to become an established go-to open access publishing option for multidisciplinary bioengineering and biotechnology research and in the process has grown considerably over the last few years achieving our first Journal Impact Factor 2018 in 2019. Here we are pleased to introduce this special eBook entitled ‘Highlights from Frontiers in Bioengineering and Biotechnology in 2020’ edited by our 10 Specialty Chief Editors of Frontiers in Bioengineering and Biotechnology aiming to support Frontiers’ strong community by recognizing highly deserving authors. The work presented here highlights the broad diversity of exciting research performed across the journal and aims to put a spotlight on few areas of interest within each section. This collection showcases one or two exceptional articles published in 2020 per section of the journal. Each article has been specially handpicked by each of our 10 Specialty Chief Editors who have written a short paragraph to explain their selection and why this article is a particularly important and exciting addition to their respective fields. Our eBook thus spans Biomaterials, Biomechanics, Bionics and Biomimetics, Bioprocess Engineering, Biosafety and Biosecurity, Industrial Biotechnology, Nanobiotechnology, Preclinical Cell and Gene Therapy, Synthetic Biology and Tissue Engineering and Regenerative Medicine. All research presented here displays advances in the field of Bioengineering and Biotechnology. We hope you enjoy our selection of key articles; please ensure you are signed into your Frontiers Loop profile to download the free eBook. We also thank all authors, editors and reviewers of Frontiers in Bioengineering and Biotechnology for their contributions to our journal and look forward to another exciting year in 2021. Dr. Ranieri Cancedda (Field Chief Editor)

Emerging Technologies for Nanoparticle Manufacturing

Emerging Technologies for Nanoparticle Manufacturing PDF Author: Jayvadan K. Patel
Publisher: Springer Nature
ISBN: 3030507033
Category : Medical
Languages : en
Pages : 611

Book Description
This book provides an overview of nanoparticle production methods, scale-up issues drawing attention to industrial applicability, and addresses their successful applications for commercial use. There is a need for a reference book which will address various aspects of recent progress in the methods of development of nanoparticles with a focus on polymeric and lipid nanoparticles, their scale-up techniques, and challenges in their commercialization. There is no consolidated reference book that discusses the emerging technologies for nanoparticle manufacturing. This book focuses on the following major aspects of emerging technologies for nano particle manufacturing. I. Introduction and Biomedical Applications of Nanoparticles II. Polymeric Nanoparticles III. Lipid Nanoparticles IV. Metallic Nanoparticles V. Quality Control for Nanoparticles VI. Challenges in Scale-Up Production of Nanoparticles VII. Injectable Nanosystems VIII. Future Directions and Challenges Leading scientists are selected as chapter authors who have contributed significantly in this field and they focus more on emerging technologies for nanoparticle manufacturing, future directions, and challenges.

Angiogenesis Assays

Angiogenesis Assays PDF Author: Carolyn A. Staton
Publisher: John Wiley & Sons
ISBN: 047002934X
Category : Medical
Languages : en
Pages : 410

Book Description
Angiogenesis, the development of new blood vessels from the existing vasculature, is essential for physiological growth and over 18,000 research articles have been published describing the role of angiogenesis in over 70 different diseases, including cancer, diabetic retinopathy, rheumatoid arthritis and psoriasis. One of the most important technical challenges in such studies has been finding suitable methods for assessing the effects of regulators of eh angiogenic response. While increasing numbers of angiogenesis assays are being described both in vitro and in vivo, it is often still necessary to use a combination of assays to identify the cellular and molecular events in angiogenesis and the full range of effects of a given test protein. Although the endothelial cell - its migration, proliferation, differentiation and structural rearrangement - is central to the angiogenic process, it is not the only cell type involved. the supporting cells, the extracellular matrix and the circulating blood with its cellular and humoral components also contribute. In this book, experts in the use of a diverse range of assays outline key components of these and give a critical appraisal of their strengths and weaknesses. Examples include assays for the proliferation, migration and differentiation of endothelial cells in vitro, vessel outgrowth from organ cultures, assessment of endothelial and mural cell interactions, and such in vivo assays as the chick chorioallantoic membrane, zebrafish, corneal, chamber and tumour angiogenesis models. These are followed by a critical analysis of the biological end-points currently being used in clinical trials to assess the clinical efficacy of anti-angiogenic drugs, which leads into a discussion of the direction future studies should take. This valuable book is of interest to research scientists currently working on angiogenesis in both the academic community and in the biotechnology and pharmaceutical industries. Relevant disciplines include cell and molecular biology, oncology, cardiovascular research, biotechnology, pharmacology, pathology and physiology.

Converging Technologies for Improving Human Performance

Converging Technologies for Improving Human Performance PDF Author: Mihail C. Roco
Publisher: Springer Science & Business Media
ISBN: 9401703590
Category : Technology & Engineering
Languages : en
Pages : 477

Book Description
M. C. Roco and W.S. Bainbridge In the early decades of the 21st century, concentrated efforts can unify science based on the unity of nature, thereby advancing the combination of nanotechnology, biotechnology, information technology, and new technologies based in cognitive science. With proper attention to ethical issues and societal needs, converging in human abilities, societal technologies could achieve a tremendous improvement outcomes, the nation's productivity, and the quality of life. This is a broad, cross cutting, emerging and timely opportunity of interest to individuals, society and humanity in the long term. The phrase "convergent technologies" refers to the synergistic combination of four major "NBIC" (nano-bio-info-cogno) provinces of science and technology, each of which is currently progressing at a rapid rate: (a) nanoscience and nanotechnology; (b) biotechnology and biomedicine, including genetic engineering; (c) information technology, including advanced computing and communications; (d) cognitive science, including cognitive neuroscience. Timely and Broad Opportunity. Convergence of diverse technologies is based on material unity at the nanoscale and on technology integration from that scale.

Molecular Diagnostics: Promises and Possibilities

Molecular Diagnostics: Promises and Possibilities PDF Author: Mousumi Debnath
Publisher: Springer Science & Business Media
ISBN: 9048132614
Category : Medical
Languages : en
Pages : 527

Book Description
A rapid development in diverse areas of molecular biology and genetic engineering resulted in emergence of variety of tools. These tools are not only applicable to basic researches being carried out world over, but also exploited for precise detection of abnormal conditions in plants, animals and human body. Although a basic researcher is well versed with few techniques used by him/her in the laboratory, they may not be well acquainted with methodologies, which can be used to work out some of their own research problems. The picture is more blurred when the molecular diagnostic tools are to be used by physicians, scientists and technicians working in diagnostic laboratories in hospitals, industry and academic institutions. Since many of them are not trained in basics of these methods, they come across several gray areas in understanding of these tools. The accurate application of molecular diagnostic tools demands in depth understanding of the methodology for precise detection of the abnormal condition of living body. To meet the requirements of a good book on molecular diagnostics of students, physicians, scientists working in agricultural, veterinary, medical and pharmaceutical sciences, it needs to expose the reader lucidly to: Give basic science behind commonly used tools in diagnostics Expose the readers to detailed applications of these tools and Make them aware the availability of such diagnostic tools The book will attract additional audience of pathologists, medical microbiologists, pharmaceutical sciences, agricultural scientists and veterinary doctors if the following topics are incorporated at appropriate places in Unit II or separately as a part of Unit-III in the book. Molecular diagnosis of diseases in agricultural crops Molecular diagnosis of veterinary diseases. Molecular epidemiology, which helps to differentiate various epidemic strains and sources of disease outbreaks. Even in different units of the same hospital, the infections could be by different strains of the same species and the information becomes valuable for infection control strategies. Drug resistance is a growing problem for bacterial, fungal and parasitic microbes and the molecular biology tools can help to detect the drug resistance genes without the cultivation and in vitro sensitivity testing. Molecular diagnostics offers faster help in the selection of the proper antibiotic for the treatment of tuberculosis, which is a major problem of the in the developing world. The conventional culture and drug sensitivity testing of tuberculosis bacilli is laborious and time consuming, whereas molecular diagnosis offers rapid drug resistant gene detection even from direct clinical samples. The same approach for HIV, malaria and many more diseases needs to be considered. Molecular diagnostics in the detection of diseases during foetal life is an upcoming area in the foetal medicine in case of genetic abnormalities and infectious like TORCH complex etc. The book will be equally useful to students, scientists and professionals working in the field of molecular diagnostics.

Tissue Engineering for Artificial Organs, 2 Volume Set

Tissue Engineering for Artificial Organs, 2 Volume Set PDF Author: Anwarul Hasan
Publisher: John Wiley & Sons
ISBN: 3527338632
Category : Science
Languages : en
Pages : 762

Book Description
A comprehensive overview of the latest achievements, trends, and the current state of the art of this important and rapidly expanding field. Clearly and logically structured, the first part of the book explores the fundamentals of tissue engineering, providing a separate chapter on each of the basic topics, including biomaterials stem cells, biosensors and bioreactors. The second part then follows a more applied approach, discussing various applications of tissue engineering, such as the replacement or repairing of skins, cartilages, livers and blood vessels, to trachea, lungs and cardiac tissues, to musculoskeletal tissue engineering used for bones and ligaments as well as pancreas, kidney and neural tissue engineering for the brain. The book concludes with a look at future technological advances. An invaluable reading for entrants to the field in biomedical engineering as well as expert researchers and developers in industry.

Primary Mesenchymal Cells

Primary Mesenchymal Cells PDF Author: F. Koller
Publisher: Springer Science & Business Media
ISBN: 0306468700
Category : Science
Languages : en
Pages : 244

Book Description
The human body contains many specialized tissues that are capable of fulfilling an incredible variety of functions necessary for our survival. This volume in the Human Cell Culture Series focuses on mesenchymal tissues and cells. The in vitro study of mesenchymal cells is perhaps the oldest form of human cell culture, beginning with the culturing of fibroblasts. Fibroblasts have long been generically described in the literature, arising from many tissue types upon in vitro cell culture. However, recent studies, many enabled by new molecular biology techniques, have shown considerable diversity in fibroblast type and function, as described within this volume. Mesenchymal tissue types that are described within include bone, cartilage, tendons and ligaments, muscle, adipose tissue, and skin (dermis). The proper function of these tissues is predominantly dependent upon the proper proliferation, differentiation, and function of the mesenchymal cells which make up the tissue. Recent advancements in primary human mesenchymal cell culture have led to remarkable progress in the study of these tissues. Landmark experiments have now demonstrated a stem cell basis for many of these tissues, and, furthermore, significant plasticity and inter-conversion of stem cells between these tissues, resulting in a great deal of contemporary excitement and controversy. Newly-developed mesenchymal cell culture techniques have even lead to novel clinical practices for the treatment of disease.

Nanobiomaterials in Soft Tissue Engineering

Nanobiomaterials in Soft Tissue Engineering PDF Author: Alexandru Grumezescu
Publisher: William Andrew
ISBN: 0323428886
Category : Technology & Engineering
Languages : en
Pages : 530

Book Description
Nanobiomaterials in Soft Tissue Engineering brings together recent developments and the latest approaches in the field of soft tissue engineering at the nanoscale, offering a new perspective on the evolution of current and future applications. Leading researchers from around the world present the latest research and share new insights. This book covers the major conventional and unconventional fabrication methods of typical three-dimensional scaffolds used in regenerative medicine. Surface modification and spatial properties are included in an up-to-date overview, with the latest in vivo applications of engineered 3D scaffolds discussed. The book also considers the impact, advantages and future scope of the various methods. This book will be of interest to postdoctoral researchers, professors and students engaged in the fields of materials science, biotechnology and applied chemistry. It will also be highly valuable to those working in industry, including pharmaceutics and biotechnology companies, medical researchers, biomedical engineers and advanced clinicians. - An informative handbook for researchers, practitioners and students working in biomedical, biotechnological and engineering fields. - A detailed and invaluable overview of soft tissue engineering, including the most recent scientific developments. - Proposes novel opportunities and ideas for developing or improving technologies in nanomedicine and nanobiology.

Implantable Bioelectronics

Implantable Bioelectronics PDF Author: Evgeny Katz
Publisher: John Wiley & Sons
ISBN: 3527673164
Category : Science
Languages : en
Pages : 566

Book Description
Here the renowned editor Evgeny Katz has chosen contributions that cover a wide range of examples and issues in implantable bioelectronics, resulting in an excellent overview of the topic. The various implants covered include biosensoric and prosthetic devices, as well as neural and brain implants, while ethical issues, suitable materials, biocompatibility, and energy-harvesting devices are also discussed. A must-have for both newcomers and established researchers in this interdisciplinary field that connects scientists from chemistry, material science, biology, medicine, and electrical engineering.