Author: Longbiao Li
Publisher: Springer Nature
ISBN: 9819712947
Category :
Languages : en
Pages : 139
Book Description
Micromechanics of Ceramic-Matrix Composites at Elevated Temperatures
Author: Longbiao Li
Publisher: Springer Nature
ISBN: 9819712947
Category :
Languages : en
Pages : 139
Book Description
Publisher: Springer Nature
ISBN: 9819712947
Category :
Languages : en
Pages : 139
Book Description
Plastic Deformation of Ceramics
Author: R.C. Bradt
Publisher: Springer Science & Business Media
ISBN: 1489914412
Category : Science
Languages : en
Pages : 661
Book Description
This proceedings volume, "Plastic Deformation of Ceramics," constitutes the papers of an international symposium held at Snowbird, Utah from August 7-12, 1994. It was attended by nearly 100 scientists and engineers from more than a dozen countries representing academia, national laboratories, and industry. Two previous conferences on this topic were held at The Pennsylvania State University in 1974 and 1983. Therefore, the last major international conference focusing on the deformation of ceramic materials was held more than a decade ago. Since the early 1980s, ceramic materials have progressed through an evolutionary period of development and advancement. They are now under consideration for applications in engineering structures. The contents of the previous conferences indicate that considerable effort was directed towards a basic understanding of deformation processes in covalently bonded or simple oxide ceramics. However, now, more than a decade later, the focus has completely shifted. In particular, the drive for more efficient heat engines has resulted in the development of silicon-based ceramics and composite ceramics. The discovery of high-temperature cupric oxide-based superconductors has created a plethora of interesting perovskite-Iike structured ceramics. Additionally, nanophase ceramics, ceramic thin films, and various forms of toughened ceramics have potential applications and, hence, their deformation has been investigated. Finally, new and exciting areas of research have attracted interest since 1983, including fatigue, nanoindentation techniques, and superplasticity.
Publisher: Springer Science & Business Media
ISBN: 1489914412
Category : Science
Languages : en
Pages : 661
Book Description
This proceedings volume, "Plastic Deformation of Ceramics," constitutes the papers of an international symposium held at Snowbird, Utah from August 7-12, 1994. It was attended by nearly 100 scientists and engineers from more than a dozen countries representing academia, national laboratories, and industry. Two previous conferences on this topic were held at The Pennsylvania State University in 1974 and 1983. Therefore, the last major international conference focusing on the deformation of ceramic materials was held more than a decade ago. Since the early 1980s, ceramic materials have progressed through an evolutionary period of development and advancement. They are now under consideration for applications in engineering structures. The contents of the previous conferences indicate that considerable effort was directed towards a basic understanding of deformation processes in covalently bonded or simple oxide ceramics. However, now, more than a decade later, the focus has completely shifted. In particular, the drive for more efficient heat engines has resulted in the development of silicon-based ceramics and composite ceramics. The discovery of high-temperature cupric oxide-based superconductors has created a plethora of interesting perovskite-Iike structured ceramics. Additionally, nanophase ceramics, ceramic thin films, and various forms of toughened ceramics have potential applications and, hence, their deformation has been investigated. Finally, new and exciting areas of research have attracted interest since 1983, including fatigue, nanoindentation techniques, and superplasticity.
Ceramic Matrix Composites
Author: Narottam P. Bansal
Publisher: John Wiley & Sons
ISBN: 1118832892
Category : Technology & Engineering
Languages : en
Pages : 725
Book Description
This book is a comprehensive source of information on various aspects of ceramic matrix composites (CMC). It covers ceramic and carbon fibers; the fiber-matrix interface; processing, properties and industrial applications of various CMC systems; architecture, mechanical behavior at room and elevated temperatures, environmental effects and protective coatings, foreign object damage, modeling, life prediction, integration and joining. Each chapter in the book is written by specialists and internationally renowned researchers in the field. This book will provide state-of-the-art information on different aspects of CMCs. The book will be directed to researchers working in industry, academia, and national laboratories with interest and professional competence on CMCs. The book will also be useful to senior year and graduate students pursuing degrees in ceramic science and engineering, materials science and engineering, aeronautical, mechanical, and civil or aerospace engineering. Presents recent advances, new approaches and discusses new issues in the field, such as foreign object damage, life predictions, multiscale modeling based on probabilistic approaches, etc. Caters to the increasing interest in the application of ceramic matrix composites (CMC) materials in areas as diverse as aerospace, transport, energy, nuclear, and environment. CMCs are considered ans enabling technology for advanced aeropropulsion, space propulsion, space power, aerospace vehicles, space structures, as well as nuclear and chemical industries. Offers detailed descriptions of ceramic and carbon fibers; fiber-matrix interface; processing, properties and industrial applications of various CMC systems; architecture, mechanical behavior at room and elevated temperatures, environmental effects and protective coatings, foreign object damage, modeling, life prediction, integration/joining.
Publisher: John Wiley & Sons
ISBN: 1118832892
Category : Technology & Engineering
Languages : en
Pages : 725
Book Description
This book is a comprehensive source of information on various aspects of ceramic matrix composites (CMC). It covers ceramic and carbon fibers; the fiber-matrix interface; processing, properties and industrial applications of various CMC systems; architecture, mechanical behavior at room and elevated temperatures, environmental effects and protective coatings, foreign object damage, modeling, life prediction, integration and joining. Each chapter in the book is written by specialists and internationally renowned researchers in the field. This book will provide state-of-the-art information on different aspects of CMCs. The book will be directed to researchers working in industry, academia, and national laboratories with interest and professional competence on CMCs. The book will also be useful to senior year and graduate students pursuing degrees in ceramic science and engineering, materials science and engineering, aeronautical, mechanical, and civil or aerospace engineering. Presents recent advances, new approaches and discusses new issues in the field, such as foreign object damage, life predictions, multiscale modeling based on probabilistic approaches, etc. Caters to the increasing interest in the application of ceramic matrix composites (CMC) materials in areas as diverse as aerospace, transport, energy, nuclear, and environment. CMCs are considered ans enabling technology for advanced aeropropulsion, space propulsion, space power, aerospace vehicles, space structures, as well as nuclear and chemical industries. Offers detailed descriptions of ceramic and carbon fibers; fiber-matrix interface; processing, properties and industrial applications of various CMC systems; architecture, mechanical behavior at room and elevated temperatures, environmental effects and protective coatings, foreign object damage, modeling, life prediction, integration/joining.
Time-Dependent Mechanical Behavior of Ceramic-Matrix Composites at Elevated Temperatures
Author: Longbiao Li
Publisher: Springer Nature
ISBN: 9811532745
Category : Technology & Engineering
Languages : en
Pages : 373
Book Description
This book investigates the time-dependent behavior of fiber-reinforced ceramic-matrix composites (CMCs) at elevated temperatures. The author combines the time-dependent damage mechanisms of interface and fiber oxidation and fracture with the micromechanical approach to establish the relationships between the first matrix cracking stress, matrix multiple cracking evolution, tensile strength, tensile stress-strain curves and tensile fatigue of fiber-reinforced CMCs and time. Then, using damage models of energy balance, the fracture mechanics approach, critical matrix strain energy criterion, Global Load Sharing criterion, and hysteresis loops he determines the first matrix cracking stress, interface debonded length, matrix cracking density, fibers failure probability, tensile strength, tensile stress-strain curves and fatigue hysteresis loops. Lastly, he predicts the time-dependent mechanical behavior of different fiber-reinforced CMCs, i.e., C/SiC and SiC/SiC, using the developed approaches, in order to reduce the failure risk during the operation of aero engines. The book is intended for undergraduate and graduate students who are interested in the mechanical behavior of CMCs, researchers investigating the damage evolution of CMCs at elevated temperatures, and designers responsible for hot-section CMC components in aero engines.
Publisher: Springer Nature
ISBN: 9811532745
Category : Technology & Engineering
Languages : en
Pages : 373
Book Description
This book investigates the time-dependent behavior of fiber-reinforced ceramic-matrix composites (CMCs) at elevated temperatures. The author combines the time-dependent damage mechanisms of interface and fiber oxidation and fracture with the micromechanical approach to establish the relationships between the first matrix cracking stress, matrix multiple cracking evolution, tensile strength, tensile stress-strain curves and tensile fatigue of fiber-reinforced CMCs and time. Then, using damage models of energy balance, the fracture mechanics approach, critical matrix strain energy criterion, Global Load Sharing criterion, and hysteresis loops he determines the first matrix cracking stress, interface debonded length, matrix cracking density, fibers failure probability, tensile strength, tensile stress-strain curves and fatigue hysteresis loops. Lastly, he predicts the time-dependent mechanical behavior of different fiber-reinforced CMCs, i.e., C/SiC and SiC/SiC, using the developed approaches, in order to reduce the failure risk during the operation of aero engines. The book is intended for undergraduate and graduate students who are interested in the mechanical behavior of CMCs, researchers investigating the damage evolution of CMCs at elevated temperatures, and designers responsible for hot-section CMC components in aero engines.
Matrix Cracking in Ceramic-Matrix Composites
Author: Longbiao Li
Publisher: Springer Nature
ISBN: 9811902321
Category : Technology & Engineering
Languages : en
Pages : 170
Book Description
This book focuses on the matrix cracking behavior in ceramic–matrix composites (CMCs), including first matrix cracking behavior, matrix cracking evolution behavior, matrix crack opening and closure behavior considering temperature and oxidation. The micro-damage mechanisms are analyzed, and the micromechanical damage models are developed to characterize the cracking behavior. Experimental matrix cracking behavior of different CMCs at room and elevated temperatures is predicted. The book can help the material scientists and engineering designers to better understand the cracking behavior in CMCs.
Publisher: Springer Nature
ISBN: 9811902321
Category : Technology & Engineering
Languages : en
Pages : 170
Book Description
This book focuses on the matrix cracking behavior in ceramic–matrix composites (CMCs), including first matrix cracking behavior, matrix cracking evolution behavior, matrix crack opening and closure behavior considering temperature and oxidation. The micro-damage mechanisms are analyzed, and the micromechanical damage models are developed to characterize the cracking behavior. Experimental matrix cracking behavior of different CMCs at room and elevated temperatures is predicted. The book can help the material scientists and engineering designers to better understand the cracking behavior in CMCs.
Ceramic Matrix Composites
Author: Walter Krenkel
Publisher: John Wiley & Sons
ISBN: 9783527313617
Category : Technology & Engineering
Languages : en
Pages : 448
Book Description
Covering an important material class for modern applications in the aerospace, automotive, energy production and creation sectors, this handbook and reference contains comprehensive data tables and field reports on successfully developed prototypes. The editor and authors are internationally renowned experts from NASA, EADS, DLR, Porsche, MT Aerospace, as well as universities and institutions in the USA, Europe and Japan, and they provide here a comprehensive overview of current R & D with an application-oriented emphasis.
Publisher: John Wiley & Sons
ISBN: 9783527313617
Category : Technology & Engineering
Languages : en
Pages : 448
Book Description
Covering an important material class for modern applications in the aerospace, automotive, energy production and creation sectors, this handbook and reference contains comprehensive data tables and field reports on successfully developed prototypes. The editor and authors are internationally renowned experts from NASA, EADS, DLR, Porsche, MT Aerospace, as well as universities and institutions in the USA, Europe and Japan, and they provide here a comprehensive overview of current R & D with an application-oriented emphasis.
High Temperature Mechanical Behaviour of Ceramic Composites
Author: Karl Jakus
Publisher: Elsevier
ISBN: 0080523889
Category : Technology & Engineering
Languages : en
Pages : 569
Book Description
High Temperature Mechanical Behavior of Ceramic Composites provides an up-to-date comprehensive coverage of the mechanical behavior of ceramic matrix composites at elevated temperatures. Topics include both short-term behavior (strength, fracture toughness and R-curve behavior) and long-term behavior (creep, creep-fatigue, delayed failure and lifetime). Emphasis is on a review of fundamentals and on the mechanics and mechanisms underlying properties. This is the first time that complete information of elevated temperature behavior of ceramic composites has ever been compacted together in a single volume. Of particular importance is that each chapter, written by internationally recognized experts, includes a substantial review component enabling the new material to be put in proper perspective. Shanti Nair is Associate Professor at the Department of Mechanical Engineering at the University of Massachusetts at Amherst. Karl Jakus is Professor at the University of Massachusetts at Amherst.
Publisher: Elsevier
ISBN: 0080523889
Category : Technology & Engineering
Languages : en
Pages : 569
Book Description
High Temperature Mechanical Behavior of Ceramic Composites provides an up-to-date comprehensive coverage of the mechanical behavior of ceramic matrix composites at elevated temperatures. Topics include both short-term behavior (strength, fracture toughness and R-curve behavior) and long-term behavior (creep, creep-fatigue, delayed failure and lifetime). Emphasis is on a review of fundamentals and on the mechanics and mechanisms underlying properties. This is the first time that complete information of elevated temperature behavior of ceramic composites has ever been compacted together in a single volume. Of particular importance is that each chapter, written by internationally recognized experts, includes a substantial review component enabling the new material to be put in proper perspective. Shanti Nair is Associate Professor at the Department of Mechanical Engineering at the University of Massachusetts at Amherst. Karl Jakus is Professor at the University of Massachusetts at Amherst.
Degradation of Continuous Fiber Ceramic Matrix Composites Under Constant-Load Conditions
Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 22
Book Description
Ten different ceramic matrix composite (CMC) materials were subjected to a constant load and temperature in an air environment. Tests conducted under these conditions are often referred to as stressed oxidation or creep rupture tests. The stressed oxidation tests were conducted at a temperature of 1454 deg C at stresses of 69 MPa, 172 MPa and 50% of each material's ultimate tensile strength. The ten materials included such CMCs as C/SiC, SiC/C, SiC/SiC, SiC/SiNC and C/C. The time to failure results of the stressed oxidation tests will be presented. Much of the discussion regarding material degradation under stressed oxidation conditions will focus on C/SiC composites. Thermogravimetric analysis of the oxidation of fully exposed carbon fiber (T300) and of C/SiC coupons will be presented as well as a model that predicts the oxidation patterns and kinetics of carbon fiber tows oxidizing in a nonreactive matrix.
Publisher:
ISBN:
Category :
Languages : en
Pages : 22
Book Description
Ten different ceramic matrix composite (CMC) materials were subjected to a constant load and temperature in an air environment. Tests conducted under these conditions are often referred to as stressed oxidation or creep rupture tests. The stressed oxidation tests were conducted at a temperature of 1454 deg C at stresses of 69 MPa, 172 MPa and 50% of each material's ultimate tensile strength. The ten materials included such CMCs as C/SiC, SiC/C, SiC/SiC, SiC/SiNC and C/C. The time to failure results of the stressed oxidation tests will be presented. Much of the discussion regarding material degradation under stressed oxidation conditions will focus on C/SiC composites. Thermogravimetric analysis of the oxidation of fully exposed carbon fiber (T300) and of C/SiC coupons will be presented as well as a model that predicts the oxidation patterns and kinetics of carbon fiber tows oxidizing in a nonreactive matrix.
Durability of Ceramic-Matrix Composites
Author: Longbiao Li
Publisher: Woodhead Publishing
ISBN: 0081030223
Category : Technology & Engineering
Languages : en
Pages : 480
Book Description
Durability of Ceramic-Matrix Composites presents the latest information on these high-temperature structural materials and their outstanding advantages over more conventional materials, including their high specific strength, high specific modulus, high temperature resistance and good thermal stability. The critical nature of the application of these advanced materials makes it necessary to have a complete understanding of their characterization. This book focuses explicitly on the durability of CMCs and will be extremely valuable for materials scientists and engineers who are dealing with the simulation of durability response and fatigue of ceramic matrix composites. - Provides the latest theoretical and applied research in the field of ceramic matrix composites, particularly as it relates to usage in aerospace propulsion systems - Presents extensive information on the micromechanics of damage evolution, lifetime prediction and durability in ceramic matrix composites - Details parameter studies that are valuable for materials development and lifetime durability studies
Publisher: Woodhead Publishing
ISBN: 0081030223
Category : Technology & Engineering
Languages : en
Pages : 480
Book Description
Durability of Ceramic-Matrix Composites presents the latest information on these high-temperature structural materials and their outstanding advantages over more conventional materials, including their high specific strength, high specific modulus, high temperature resistance and good thermal stability. The critical nature of the application of these advanced materials makes it necessary to have a complete understanding of their characterization. This book focuses explicitly on the durability of CMCs and will be extremely valuable for materials scientists and engineers who are dealing with the simulation of durability response and fatigue of ceramic matrix composites. - Provides the latest theoretical and applied research in the field of ceramic matrix composites, particularly as it relates to usage in aerospace propulsion systems - Presents extensive information on the micromechanics of damage evolution, lifetime prediction and durability in ceramic matrix composites - Details parameter studies that are valuable for materials development and lifetime durability studies