Methods in Biosensors and Biomolecular Electronics PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Methods in Biosensors and Biomolecular Electronics PDF full book. Access full book title Methods in Biosensors and Biomolecular Electronics by Tatiana Fiordelisio. Download full books in PDF and EPUB format.

Methods in Biosensors and Biomolecular Electronics

Methods in Biosensors and Biomolecular Electronics PDF Author: Tatiana Fiordelisio
Publisher: Frontiers Media SA
ISBN: 283253824X
Category : Technology & Engineering
Languages : en
Pages : 109

Book Description
This Research Topic is part of the Methods in Frontiers in Bioengineering and Biotechnology series. Other titles in this series are: Methods in Nanobiotechnology Methods In Industrial Biotechnology & Bioprocess Engineering – Microalgae As A Source of Valuable Compounds ​ ​ This collection in the series aims to highlight the latest experimental techniques and methods used to investigate fundamental questions in biosensors and biomolecular electronic research, from methods in sensors for point-of-care diagnostics to those in protein electronics. Review articles or Opinions on methodologies or applications including the advantages and limitations of each are welcome. This Topic includes technologies and up-to-date methods which help advance translational science.​ ​ The contributions to this collection will undergo peer review. Novelty may vary, but the utility of a method or protocol must be evident. We welcome contributions covering all aspects of biosensors and biomolecular electronics. Submissions will be handled by the team of Topic Editors in the respective sections.​

Methods in Biosensors and Biomolecular Electronics

Methods in Biosensors and Biomolecular Electronics PDF Author: Tatiana Fiordelisio
Publisher: Frontiers Media SA
ISBN: 283253824X
Category : Technology & Engineering
Languages : en
Pages : 109

Book Description
This Research Topic is part of the Methods in Frontiers in Bioengineering and Biotechnology series. Other titles in this series are: Methods in Nanobiotechnology Methods In Industrial Biotechnology & Bioprocess Engineering – Microalgae As A Source of Valuable Compounds ​ ​ This collection in the series aims to highlight the latest experimental techniques and methods used to investigate fundamental questions in biosensors and biomolecular electronic research, from methods in sensors for point-of-care diagnostics to those in protein electronics. Review articles or Opinions on methodologies or applications including the advantages and limitations of each are welcome. This Topic includes technologies and up-to-date methods which help advance translational science.​ ​ The contributions to this collection will undergo peer review. Novelty may vary, but the utility of a method or protocol must be evident. We welcome contributions covering all aspects of biosensors and biomolecular electronics. Submissions will be handled by the team of Topic Editors in the respective sections.​

Biomolecular Electronics

Biomolecular Electronics PDF Author: Nikolai Vsevolodov
Publisher: Springer Science & Business Media
ISBN: 146122442X
Category : Science
Languages : en
Pages : 287

Book Description
The properties of materials depend on the nature of the macromolecules, small molecules and inorganic components and the interfaces and interactions between them. Polymer chemistry and physics, and inorganic phase structure and density are major factors that influence the performance of materials. In addition, molecular recognition, organic-inorganic interfaces and many other types of interactions among components are key issues in determining the properties of materials for a wide range of applications. Materials require ments are becoming more and more specialized to meet increasingly demand ing needs, from specific environmental stresses to high performance or biomedical applications such as matrices for controlled release tissue scaf folds. One approach to meet these performance criteria is to achieve better control over the tailoring of the components and their interactions that govern the material properties. This goal is driving a great deal of ongoing research in material science laboratories. In addition, control at the molecular level of interactions between these components is a key in many instances in order to reach this goal since traditional approaches used to glue, stitch or fasten parts together can no longer suffice at these new levels of manipulation to achieve higher performance. In many cases, molecular recognition and self-assembly must begin to drive these processes to achieve the levels of control desired. This same need for improved performance has driven Nature over millenia to attain higher and higher complexity.

Biomolecular Electronics

Biomolecular Electronics PDF Author: Paolo Facci
Publisher: William Andrew
ISBN: 1455731528
Category : Technology & Engineering
Languages : en
Pages : 257

Book Description
Biomolecular Electronics – the electrical control of biological phenomena – is a scientific challenge that, once fully realized, will find a wide range of applications from electronics and computing to medicine and therapeutic techniques.This new arena of biomolecular electronics is approached using familiar concepts from many areas such as electrochemistry, device electronics and some mechanisms of gene expression level control. Practical techniques are explored by which electrical and electronic means can be used to control biological reactions and processes. Also, the current and future applications for this new and expanding field are discussed.This book is aimed at scientists and engineers involved in both research and commercial applications across fields including bioelectronics, bionanotechnology, electrochemistry and nanomedicine – providing a state-of-the-art survey of what's going on at the boundary between biology and electronic technology at the micro- and nano- scales, along with a suggestive insight into future possible developments. Demystifies the science and applications of electrically-driven biological reactions Explains how the techniques of bioelectronics and electrochemistry can be deployed as biological control technologies Provides applications information for diverse areas from bio-electrochemistry to electrical control of gene expression levels

Molecular Electronics

Molecular Electronics PDF Author: F.T. Hong
Publisher: Springer Science & Business Media
ISBN: 146157482X
Category : Science
Languages : en
Pages : 441

Book Description
The dream of developing a biocomputer should not be dismissed as a sheer fantasy. Although there is naturally some doubt as to whether it is possible to design a computer using carbon-based components as in living organisms, instead of silicon-based components as in existing computers, the fact that an average brain often outperforms the most sophisticated computer in terms of the complexity of tasks, if not in terms of speed, is a living testimony to this possibility. The remaining question is to what extent a biocomputer can mimic a living organism and whether it is possible to design and fabri cate such a biocomputer within the foreseeable future. This volume does not attempt to provide immediate and exact answers to these questions but instead attempts to provide a vision and a progress report of the initial efforts. This volume is mainly a collection of papers presented at the Symposium on Molecular Electronics - Biosensors and Biocomputers, sponsored by the Divi sion of Biotechnology, Health and Environment of the Fine Particle Society, held from July 19-22, 1989 at the Society's 19th Annual Meeting in Santa Clara, California. Also included are articles contributed by those who planned to attend the conference but were unable to do so. The emergence of the field of molecular electronics is largely the consequence of one person's crusade, that of Forrest L. Carter.

Nanobiosensors for Biomolecular Targeting

Nanobiosensors for Biomolecular Targeting PDF Author: Subash C.B. Gopinath
Publisher: Elsevier
ISBN: 9780128139004
Category : Technology & Engineering
Languages : en
Pages : 0

Book Description
Nanobiosensors for Bio-molecular Targeting presents the latest analytical methods for the detection of different substances in the range of small molecules to whole cells, exploring the advantages and disadvantages of each method. Biosensors combine the component of biological origin and physicochemical detector to show the presence of analytes in a given sample. The use of bionanotechnology has led to a significant advancement in the progression of nanobiosensors and has been effectively used for biomedical diagnosis.

Opportunities in Biotechnology for Future Army Applications

Opportunities in Biotechnology for Future Army Applications PDF Author: National Research Council
Publisher: National Academies Press
ISBN: 0309075556
Category : Science
Languages : en
Pages : 118

Book Description
This report surveys opportunities for future Army applications in biotechnology, including sensors, electronics and computers, materials, logistics, and medical therapeutics, by matching commercial trends and developments with enduring Army requirements. Several biotechnology areas are identified as important for the Army to exploit, either by direct funding of research or by indirect influence of commercial sources, to achieve significant gains in combat effectiveness before 2025.

Graphene Based Biomolecular Electronic Devices

Graphene Based Biomolecular Electronic Devices PDF Author: Bansi D. Malhotra
Publisher: Elsevier
ISBN: 0128215429
Category : Technology & Engineering
Languages : en
Pages : 264

Book Description
Graphene Based Biomolecular Electronic Devices outlines the fundamental concepts related to graphene and electronics, along with a description of various advanced and emerging applications of graphene-based bioelectronics. The book includes coverage of biosensors, energy storage devices such as biofuel cells, stretchable and flexible electronics, drug delivery systems, tissue engineering, and 3D printed graphene in bioelectronics. Taking an interdisciplinary approach, it explores the synergy produced due to charge transfer between biomolecules and graphene and will help the reader understand the promising bioelectronic applications of graphene-based devices. Graphene has applications in semiconductor electronics, replacing the use of traditional silicon-based devices due to its semi-metallic nature and tuneable energy band gap properties. The tuning of electron transfer with redox properties of biomolecules could potentially lead to the development of miniaturized bioelectronic devices. Thus, graphene, with its unique sensing characteristics, has emerged as an attractive material to produce biomolecular electronic devices. Explains advanced and emerging techniques for creating graphene-based bioelectronic devices Outlines the fundamental concepts of graphene-based bio-integrated systems Addresses the major challenges in creating graphene-based bioelectronic devices on a mass scale

Introductory Bioelectronics

Introductory Bioelectronics PDF Author: Ronald R. Pethig
Publisher: John Wiley & Sons
ISBN: 1118443284
Category : Science
Languages : en
Pages : 413

Book Description
Bioelectronics is a rich field of research involving the application of electronics engineering principles to biology, medicine, and the health sciences. With its interdisciplinary nature, bioelectronics spans state-of-the-art research at the interface between the life sciences, engineering and physical sciences. Introductory Bioelectronics offers a concise overview of the field and teaches the fundamentals of biochemical, biophysical, electrical, and physiological concepts relevant to bioelectronics. It is the first book to bring together these various topics, and to explain the basic theory and practical applications at an introductory level. The authors describe and contextualise the science by examining recent research and commercial applications. They also cover the design methods and forms of instrumentation that are required in the application of bioelectronics technology. The result is a unique book with the following key features: an interdisciplinary approach, which develops theory through practical examples and clinical applications, and delivers the necessary biological knowledge from an electronic engineer’s perspective a problem section in each chapter that readers can use for self-assessment, with model answers given at the end of the book along with references to key scientific publications discussions of new developments in the bioelectronics and biosensors fields, such as microfluidic devices and nanotechnology Supplying the tools to succeed, this text is the best resource for engineering and physical sciences students in bioelectronics, biomedical engineering and micro/nano-engineering. Not only that, it is also a resource for researchers without formal training in biology, who are entering PhD programmes or working on industrial projects in these areas.

Biosensors

Biosensors PDF Author:
Publisher: BoD – Books on Demand
ISBN: 1839624310
Category : Medical
Languages : en
Pages : 256

Book Description
This book covers novel and current strategies for biosensing, from the use of nanomaterials and biological functionalized surfaces to the mathematical assessment of novel biosensors and their potential use as wearable devices for continuous monitoring. Biosensing technologies can be used in the medical field for the early detection of disease, monitoring effectiveness of treatments, detecting nervous system signals for controlling robotic prosthesis, and much more. This book includes eleven chapters that examine and discuss several strategies of biosensing, proposing mathematical designs that address the latest reported technologies.

Molecular Electronics: Bio-sensors and Bio-computers

Molecular Electronics: Bio-sensors and Bio-computers PDF Author: L. Barsanti
Publisher: Springer Science & Business Media
ISBN: 9401001413
Category : Science
Languages : en
Pages : 541

Book Description
How fast and powerful can computers become? Will it be possible someday to create artificial brains that have intellectual capabilities comparable to those of human beings? The answers to these questions depend to a very great extent on a single factor: how small and dense we can make computer circuits. Very recently, scientists have achieved revolutionary advances that may very well radically change the future of computing. There are significant advantages to using biological molecules in a new computational paradigm, since nature has solved similar problems to those encountered in harnessing organic molecules to perform data manipulation. Biomolecules could be used as photonic devices in holography, as spatial light modulators, in neural network optical computing, as nonlinear optical devices, and as optical memories. Such computers may use a billion times less energy than electronic computers, while storing data in a trillionth of the space, while also being highly parallel. Research projects implemented by national and international groups have produced a large amount of data from multidisciplinary work, ranging from physics and engineering to chemistry and biology.