Author: Sergios Theodoridis
Publisher: Elsevier
ISBN: 008051362X
Category : Technology & Engineering
Languages : en
Pages : 705
Book Description
Pattern recognition is a scientific discipline that is becoming increasingly important in the age of automation and information handling and retrieval. Patter Recognition, 2e covers the entire spectrum of pattern recognition applications, from image analysis to speech recognition and communications. This book presents cutting-edge material on neural networks, - a set of linked microprocessors that can form associations and uses pattern recognition to "learn" -and enhances student motivation by approaching pattern recognition from the designer's point of view. A direct result of more than 10 years of teaching experience, the text was developed by the authors through use in their own classrooms.*Approaches pattern recognition from the designer's point of view*New edition highlights latest developments in this growing field, including independent components and support vector machines, not available elsewhere*Supplemented by computer examples selected from applications of interest
Pattern Recognition
Author: Sergios Theodoridis
Publisher: Elsevier
ISBN: 008051362X
Category : Technology & Engineering
Languages : en
Pages : 705
Book Description
Pattern recognition is a scientific discipline that is becoming increasingly important in the age of automation and information handling and retrieval. Patter Recognition, 2e covers the entire spectrum of pattern recognition applications, from image analysis to speech recognition and communications. This book presents cutting-edge material on neural networks, - a set of linked microprocessors that can form associations and uses pattern recognition to "learn" -and enhances student motivation by approaching pattern recognition from the designer's point of view. A direct result of more than 10 years of teaching experience, the text was developed by the authors through use in their own classrooms.*Approaches pattern recognition from the designer's point of view*New edition highlights latest developments in this growing field, including independent components and support vector machines, not available elsewhere*Supplemented by computer examples selected from applications of interest
Publisher: Elsevier
ISBN: 008051362X
Category : Technology & Engineering
Languages : en
Pages : 705
Book Description
Pattern recognition is a scientific discipline that is becoming increasingly important in the age of automation and information handling and retrieval. Patter Recognition, 2e covers the entire spectrum of pattern recognition applications, from image analysis to speech recognition and communications. This book presents cutting-edge material on neural networks, - a set of linked microprocessors that can form associations and uses pattern recognition to "learn" -and enhances student motivation by approaching pattern recognition from the designer's point of view. A direct result of more than 10 years of teaching experience, the text was developed by the authors through use in their own classrooms.*Approaches pattern recognition from the designer's point of view*New edition highlights latest developments in this growing field, including independent components and support vector machines, not available elsewhere*Supplemented by computer examples selected from applications of interest
Mathematical Methodologies in Pattern Recognition and Machine Learning
Author: Pedro Latorre Carmona
Publisher: Springer Science & Business Media
ISBN: 1461450764
Category : Science
Languages : en
Pages : 200
Book Description
This volume features key contributions from the International Conference on Pattern Recognition Applications and Methods, (ICPRAM 2012,) held in Vilamoura, Algarve, Portugal from February 6th-8th, 2012. The conference provided a major point of collaboration between researchers, engineers and practitioners in the areas of Pattern Recognition, both from theoretical and applied perspectives, with a focus on mathematical methodologies. Contributions describe applications of pattern recognition techniques to real-world problems, interdisciplinary research, and experimental and theoretical studies which yield new insights that provide key advances in the field. This book will be suitable for scientists and researchers in optimization, numerical methods, computer science, statistics and for differential geometers and mathematical physicists.
Publisher: Springer Science & Business Media
ISBN: 1461450764
Category : Science
Languages : en
Pages : 200
Book Description
This volume features key contributions from the International Conference on Pattern Recognition Applications and Methods, (ICPRAM 2012,) held in Vilamoura, Algarve, Portugal from February 6th-8th, 2012. The conference provided a major point of collaboration between researchers, engineers and practitioners in the areas of Pattern Recognition, both from theoretical and applied perspectives, with a focus on mathematical methodologies. Contributions describe applications of pattern recognition techniques to real-world problems, interdisciplinary research, and experimental and theoretical studies which yield new insights that provide key advances in the field. This book will be suitable for scientists and researchers in optimization, numerical methods, computer science, statistics and for differential geometers and mathematical physicists.
Pattern Recognition and Machine Learning
Author: Christopher M. Bishop
Publisher: Springer
ISBN: 9781493938438
Category : Computers
Languages : en
Pages : 0
Book Description
This is the first textbook on pattern recognition to present the Bayesian viewpoint. The book presents approximate inference algorithms that permit fast approximate answers in situations where exact answers are not feasible. It uses graphical models to describe probability distributions when no other books apply graphical models to machine learning. No previous knowledge of pattern recognition or machine learning concepts is assumed. Familiarity with multivariate calculus and basic linear algebra is required, and some experience in the use of probabilities would be helpful though not essential as the book includes a self-contained introduction to basic probability theory.
Publisher: Springer
ISBN: 9781493938438
Category : Computers
Languages : en
Pages : 0
Book Description
This is the first textbook on pattern recognition to present the Bayesian viewpoint. The book presents approximate inference algorithms that permit fast approximate answers in situations where exact answers are not feasible. It uses graphical models to describe probability distributions when no other books apply graphical models to machine learning. No previous knowledge of pattern recognition or machine learning concepts is assumed. Familiarity with multivariate calculus and basic linear algebra is required, and some experience in the use of probabilities would be helpful though not essential as the book includes a self-contained introduction to basic probability theory.
Pattern Classification Using Ensemble Methods
Author: Lior Rokach
Publisher: World Scientific
ISBN: 9814271071
Category : Computers
Languages : en
Pages : 242
Book Description
1. Introduction to pattern classification. 1.1. Pattern classification. 1.2. Induction algorithms. 1.3. Rule induction. 1.4. Decision trees. 1.5. Bayesian methods. 1.6. Other induction methods -- 2. Introduction to ensemble learning. 2.1. Back to the roots. 2.2. The wisdom of crowds. 2.3. The bagging algorithm. 2.4. The boosting algorithm. 2.5. The AdaBoost algorithm. 2.6. No free lunch theorem and ensemble learning. 2.7. Bias-variance decomposition and ensemble learning. 2.8. Occam's razor and ensemble learning. 2.9. Classifier dependency. 2.10. Ensemble methods for advanced classification tasks -- 3. Ensemble classification. 3.1. Fusions methods. 3.2. Selecting classification. 3.3. Mixture of experts and meta learning -- 4. Ensemble diversity. 4.1. Overview. 4.2. Manipulating the inducer. 4.3. Manipulating the training samples. 4.4. Manipulating the target attribute representation. 4.5. Partitioning the search space. 4.6. Multi-inducers. 4.7. Measuring the diversity -- 5. Ensemble selection. 5.1. Ensemble selection. 5.2. Pre selection of the ensemble size. 5.3. Selection of the ensemble size while training. 5.4. Pruning - post selection of the ensemble size -- 6. Error correcting output codes. 6.1. Code-matrix decomposition of multiclass problems. 6.2. Type I - training an ensemble given a code-matrix. 6.3. Type II - adapting code-matrices to the multiclass problems -- 7. Evaluating ensembles of classifiers. 7.1. Generalization error. 7.2. Computational complexity. 7.3. Interpretability of the resulting ensemble. 7.4. Scalability to large datasets. 7.5. Robustness. 7.6. Stability. 7.7. Flexibility. 7.8. Usability. 7.9. Software availability. 7.10. Which ensemble method should be used?
Publisher: World Scientific
ISBN: 9814271071
Category : Computers
Languages : en
Pages : 242
Book Description
1. Introduction to pattern classification. 1.1. Pattern classification. 1.2. Induction algorithms. 1.3. Rule induction. 1.4. Decision trees. 1.5. Bayesian methods. 1.6. Other induction methods -- 2. Introduction to ensemble learning. 2.1. Back to the roots. 2.2. The wisdom of crowds. 2.3. The bagging algorithm. 2.4. The boosting algorithm. 2.5. The AdaBoost algorithm. 2.6. No free lunch theorem and ensemble learning. 2.7. Bias-variance decomposition and ensemble learning. 2.8. Occam's razor and ensemble learning. 2.9. Classifier dependency. 2.10. Ensemble methods for advanced classification tasks -- 3. Ensemble classification. 3.1. Fusions methods. 3.2. Selecting classification. 3.3. Mixture of experts and meta learning -- 4. Ensemble diversity. 4.1. Overview. 4.2. Manipulating the inducer. 4.3. Manipulating the training samples. 4.4. Manipulating the target attribute representation. 4.5. Partitioning the search space. 4.6. Multi-inducers. 4.7. Measuring the diversity -- 5. Ensemble selection. 5.1. Ensemble selection. 5.2. Pre selection of the ensemble size. 5.3. Selection of the ensemble size while training. 5.4. Pruning - post selection of the ensemble size -- 6. Error correcting output codes. 6.1. Code-matrix decomposition of multiclass problems. 6.2. Type I - training an ensemble given a code-matrix. 6.3. Type II - adapting code-matrices to the multiclass problems -- 7. Evaluating ensembles of classifiers. 7.1. Generalization error. 7.2. Computational complexity. 7.3. Interpretability of the resulting ensemble. 7.4. Scalability to large datasets. 7.5. Robustness. 7.6. Stability. 7.7. Flexibility. 7.8. Usability. 7.9. Software availability. 7.10. Which ensemble method should be used?
Frontiers of Pattern Recognition
Author: Satosi Watanabe
Publisher: Academic Press
ISBN: 1483268942
Category : Mathematics
Languages : en
Pages : 617
Book Description
Frontiers of Pattern Recognition contains the proceedings of the International Conference on Frontiers of Pattern Recognition which took place on January 18-20, 1971, at the University of Hawaii, Honolulu. The compendium consists of 30 papers from authorities from eleven different countries, which describe the frontiers of pattern recognition as viewed from diverse viewpoints. Topics discussed include some techniques for recognizing structures in pictures, grammatical inference, syntactic pattern recognition and stochastic languages, and pattern cognition and the organization of information. Also covered are subjects on human face recognition, cluster analysis, and learning algorithms of pattern recognition in non-stationary conditions. Computer scientists, mathematicians, statisticians, linguists, and psychologists will find the book informative.
Publisher: Academic Press
ISBN: 1483268942
Category : Mathematics
Languages : en
Pages : 617
Book Description
Frontiers of Pattern Recognition contains the proceedings of the International Conference on Frontiers of Pattern Recognition which took place on January 18-20, 1971, at the University of Hawaii, Honolulu. The compendium consists of 30 papers from authorities from eleven different countries, which describe the frontiers of pattern recognition as viewed from diverse viewpoints. Topics discussed include some techniques for recognizing structures in pictures, grammatical inference, syntactic pattern recognition and stochastic languages, and pattern cognition and the organization of information. Also covered are subjects on human face recognition, cluster analysis, and learning algorithms of pattern recognition in non-stationary conditions. Computer scientists, mathematicians, statisticians, linguists, and psychologists will find the book informative.
Statistical Pattern Recognition
Author: Andrew R. Webb
Publisher: John Wiley & Sons
ISBN: 0470854782
Category : Mathematics
Languages : en
Pages : 516
Book Description
Statistical pattern recognition is a very active area of study andresearch, which has seen many advances in recent years. New andemerging applications - such as data mining, web searching,multimedia data retrieval, face recognition, and cursivehandwriting recognition - require robust and efficient patternrecognition techniques. Statistical decision making and estimationare regarded as fundamental to the study of pattern recognition. Statistical Pattern Recognition, Second Edition has been fullyupdated with new methods, applications and references. It providesa comprehensive introduction to this vibrant area - with materialdrawn from engineering, statistics, computer science and the socialsciences - and covers many application areas, such as databasedesign, artificial neural networks, and decision supportsystems. * Provides a self-contained introduction to statistical patternrecognition. * Each technique described is illustrated by real examples. * Covers Bayesian methods, neural networks, support vectormachines, and unsupervised classification. * Each section concludes with a description of the applicationsthat have been addressed and with further developments of thetheory. * Includes background material on dissimilarity, parameterestimation, data, linear algebra and probability. * Features a variety of exercises, from 'open-book' questions tomore lengthy projects. The book is aimed primarily at senior undergraduate and graduatestudents studying statistical pattern recognition, patternprocessing, neural networks, and data mining, in both statisticsand engineering departments. It is also an excellent source ofreference for technical professionals working in advancedinformation development environments. For further information on the techniques and applicationsdiscussed in this book please visit ahref="http://www.statistical-pattern-recognition.net/"www.statistical-pattern-recognition.net/a
Publisher: John Wiley & Sons
ISBN: 0470854782
Category : Mathematics
Languages : en
Pages : 516
Book Description
Statistical pattern recognition is a very active area of study andresearch, which has seen many advances in recent years. New andemerging applications - such as data mining, web searching,multimedia data retrieval, face recognition, and cursivehandwriting recognition - require robust and efficient patternrecognition techniques. Statistical decision making and estimationare regarded as fundamental to the study of pattern recognition. Statistical Pattern Recognition, Second Edition has been fullyupdated with new methods, applications and references. It providesa comprehensive introduction to this vibrant area - with materialdrawn from engineering, statistics, computer science and the socialsciences - and covers many application areas, such as databasedesign, artificial neural networks, and decision supportsystems. * Provides a self-contained introduction to statistical patternrecognition. * Each technique described is illustrated by real examples. * Covers Bayesian methods, neural networks, support vectormachines, and unsupervised classification. * Each section concludes with a description of the applicationsthat have been addressed and with further developments of thetheory. * Includes background material on dissimilarity, parameterestimation, data, linear algebra and probability. * Features a variety of exercises, from 'open-book' questions tomore lengthy projects. The book is aimed primarily at senior undergraduate and graduatestudents studying statistical pattern recognition, patternprocessing, neural networks, and data mining, in both statisticsand engineering departments. It is also an excellent source ofreference for technical professionals working in advancedinformation development environments. For further information on the techniques and applicationsdiscussed in this book please visit ahref="http://www.statistical-pattern-recognition.net/"www.statistical-pattern-recognition.net/a
Current Research and Development in Scientific Documentation
The Cultural Life of Machine Learning
Author: Jonathan Roberge
Publisher: Springer Nature
ISBN: 3030562867
Category : Social Science
Languages : en
Pages : 298
Book Description
This book brings together the work of historians and sociologists with perspectives from media studies, communication studies, cultural studies, and information studies to address the origins, practices, and possible futures of contemporary machine learning. From its foundations in 1950s and 1960s pattern recognition and neural network research to the modern-day social and technological dramas of DeepMind’s AlphaGo, predictive political forecasting, and the governmentality of extractive logistics, machine learning has become controversial precisely because of its increased embeddedness and agency in our everyday lives. How can we disentangle the history of machine learning from conventional histories of artificial intelligence? How can machinic agents’ capacity for novelty be theorized? Can reform initiatives for fairness and equity in AI and machine learning be realized, or are they doomed to cooptation and failure? And just what kind of “learning” does machine learning truly represent? We empirically address these questions and more to provide a baseline for future research. Chapter 2 is available open access under a Creative Commons Attribution 4.0 International License via link.springer.com.
Publisher: Springer Nature
ISBN: 3030562867
Category : Social Science
Languages : en
Pages : 298
Book Description
This book brings together the work of historians and sociologists with perspectives from media studies, communication studies, cultural studies, and information studies to address the origins, practices, and possible futures of contemporary machine learning. From its foundations in 1950s and 1960s pattern recognition and neural network research to the modern-day social and technological dramas of DeepMind’s AlphaGo, predictive political forecasting, and the governmentality of extractive logistics, machine learning has become controversial precisely because of its increased embeddedness and agency in our everyday lives. How can we disentangle the history of machine learning from conventional histories of artificial intelligence? How can machinic agents’ capacity for novelty be theorized? Can reform initiatives for fairness and equity in AI and machine learning be realized, or are they doomed to cooptation and failure? And just what kind of “learning” does machine learning truly represent? We empirically address these questions and more to provide a baseline for future research. Chapter 2 is available open access under a Creative Commons Attribution 4.0 International License via link.springer.com.
Knowledge-Based Systems, Four-Volume Set
Author: Cornelius T. Leondes
Publisher: Elsevier
ISBN: 0080535283
Category : Computers
Languages : en
Pages : 1554
Book Description
The design of knowledge systems is finding myriad applications from corporate databases to general decision support in areas as diverse as engineering, manufacturing and other industrial processes, medicine, business, and economics. In engineering, for example, knowledge bases can be utilized for reliable electric power system operation. In medicine they support complex diagnoses, while in business they inform the process of strategic planning. Programmed securities trading and the defeat of chess champion Kasparov by IBM's Big Blue are two familiar examples of dedicated knowledge bases in combination with an expert system for decision-making.With volumes covering "Implementation," "Optimization," "Computer Techniques," and "Systems and Applications," this comprehensive set constitutes a unique reference source for students, practitioners, and researchers in computer science, engineering, and the broad range of applications areas for knowledge-based systems.
Publisher: Elsevier
ISBN: 0080535283
Category : Computers
Languages : en
Pages : 1554
Book Description
The design of knowledge systems is finding myriad applications from corporate databases to general decision support in areas as diverse as engineering, manufacturing and other industrial processes, medicine, business, and economics. In engineering, for example, knowledge bases can be utilized for reliable electric power system operation. In medicine they support complex diagnoses, while in business they inform the process of strategic planning. Programmed securities trading and the defeat of chess champion Kasparov by IBM's Big Blue are two familiar examples of dedicated knowledge bases in combination with an expert system for decision-making.With volumes covering "Implementation," "Optimization," "Computer Techniques," and "Systems and Applications," this comprehensive set constitutes a unique reference source for students, practitioners, and researchers in computer science, engineering, and the broad range of applications areas for knowledge-based systems.
Clustering Methodology for Symbolic Data
Author: Lynne Billard
Publisher: John Wiley & Sons
ISBN: 1119010381
Category : Mathematics
Languages : en
Pages : 352
Book Description
Covers everything readers need to know about clustering methodology for symbolic data—including new methods and headings—while providing a focus on multi-valued list data, interval data and histogram data This book presents all of the latest developments in the field of clustering methodology for symbolic data—paying special attention to the classification methodology for multi-valued list, interval-valued and histogram-valued data methodology, along with numerous worked examples. The book also offers an expansive discussion of data management techniques showing how to manage the large complex dataset into more manageable datasets ready for analyses. Filled with examples, tables, figures, and case studies, Clustering Methodology for Symbolic Data begins by offering chapters on data management, distance measures, general clustering techniques, partitioning, divisive clustering, and agglomerative and pyramid clustering. Provides new classification methodologies for histogram valued data reaching across many fields in data science Demonstrates how to manage a large complex dataset into manageable datasets ready for analysis Features very large contemporary datasets such as multi-valued list data, interval-valued data, and histogram-valued data Considers classification models by dynamical clustering Features a supporting website hosting relevant data sets Clustering Methodology for Symbolic Data will appeal to practitioners of symbolic data analysis, such as statisticians and economists within the public sectors. It will also be of interest to postgraduate students of, and researchers within, web mining, text mining and bioengineering.
Publisher: John Wiley & Sons
ISBN: 1119010381
Category : Mathematics
Languages : en
Pages : 352
Book Description
Covers everything readers need to know about clustering methodology for symbolic data—including new methods and headings—while providing a focus on multi-valued list data, interval data and histogram data This book presents all of the latest developments in the field of clustering methodology for symbolic data—paying special attention to the classification methodology for multi-valued list, interval-valued and histogram-valued data methodology, along with numerous worked examples. The book also offers an expansive discussion of data management techniques showing how to manage the large complex dataset into more manageable datasets ready for analyses. Filled with examples, tables, figures, and case studies, Clustering Methodology for Symbolic Data begins by offering chapters on data management, distance measures, general clustering techniques, partitioning, divisive clustering, and agglomerative and pyramid clustering. Provides new classification methodologies for histogram valued data reaching across many fields in data science Demonstrates how to manage a large complex dataset into manageable datasets ready for analysis Features very large contemporary datasets such as multi-valued list data, interval-valued data, and histogram-valued data Considers classification models by dynamical clustering Features a supporting website hosting relevant data sets Clustering Methodology for Symbolic Data will appeal to practitioners of symbolic data analysis, such as statisticians and economists within the public sectors. It will also be of interest to postgraduate students of, and researchers within, web mining, text mining and bioengineering.