Author: John H. Hubbard
Publisher: Springer Science & Business Media
ISBN: 0387972862
Category : Mathematics
Languages : en
Pages : 374
Book Description
This corrected third printing retains the authors'main emphasis on ordinary differential equations. It is most appropriate for upper level undergraduate and graduate students in the fields of mathematics, engineering, and applied mathematics, as well as the life sciences, physics and economics. The authors have taken the view that a differential equations theory defines functions; the object of the theory is to understand the behaviour of these functions. The tools the authors use include qualitative and numerical methods besides the traditional analytic methods, and the companion software, MacMath, is designed to bring these notions to life.
Differential Equations: A Dynamical Systems Approach
Author: John H. Hubbard
Publisher: Springer Science & Business Media
ISBN: 0387972862
Category : Mathematics
Languages : en
Pages : 374
Book Description
This corrected third printing retains the authors'main emphasis on ordinary differential equations. It is most appropriate for upper level undergraduate and graduate students in the fields of mathematics, engineering, and applied mathematics, as well as the life sciences, physics and economics. The authors have taken the view that a differential equations theory defines functions; the object of the theory is to understand the behaviour of these functions. The tools the authors use include qualitative and numerical methods besides the traditional analytic methods, and the companion software, MacMath, is designed to bring these notions to life.
Publisher: Springer Science & Business Media
ISBN: 0387972862
Category : Mathematics
Languages : en
Pages : 374
Book Description
This corrected third printing retains the authors'main emphasis on ordinary differential equations. It is most appropriate for upper level undergraduate and graduate students in the fields of mathematics, engineering, and applied mathematics, as well as the life sciences, physics and economics. The authors have taken the view that a differential equations theory defines functions; the object of the theory is to understand the behaviour of these functions. The tools the authors use include qualitative and numerical methods besides the traditional analytic methods, and the companion software, MacMath, is designed to bring these notions to life.
Method of Variation of Parameters for Dynamic Systems
Author: V. Lakshmikantham
Publisher: CRC Press
ISBN: 9789056991609
Category : Mathematics
Languages : en
Pages : 330
Book Description
Method of Variation of Parameters for Dynamic Systems presents a systematic and unified theory of the development of the theory of the method of variation of parameters, its unification with Lyapunov's method and typical applications of these methods. No other attempt has been made to bring all the available literature into one volume. This book is a clear exposition of this important topic in control theory, which is not covered by any other text. Such an exposition finally enables the comparison and contrast of the theory and the applications, thus facilitating further development in this fascinating field.
Publisher: CRC Press
ISBN: 9789056991609
Category : Mathematics
Languages : en
Pages : 330
Book Description
Method of Variation of Parameters for Dynamic Systems presents a systematic and unified theory of the development of the theory of the method of variation of parameters, its unification with Lyapunov's method and typical applications of these methods. No other attempt has been made to bring all the available literature into one volume. This book is a clear exposition of this important topic in control theory, which is not covered by any other text. Such an exposition finally enables the comparison and contrast of the theory and the applications, thus facilitating further development in this fascinating field.
Identification of Dynamic Systems
Author: Rolf Isermann
Publisher: Springer
ISBN: 9783540871552
Category : Technology & Engineering
Languages : en
Pages : 705
Book Description
Precise dynamic models of processes are required for many applications, ranging from control engineering to the natural sciences and economics. Frequently, such precise models cannot be derived using theoretical considerations alone. Therefore, they must be determined experimentally. This book treats the determination of dynamic models based on measurements taken at the process, which is known as system identification or process identification. Both offline and online methods are presented, i.e. methods that post-process the measured data as well as methods that provide models during the measurement. The book is theory-oriented and application-oriented and most methods covered have been used successfully in practical applications for many different processes. Illustrative examples in this book with real measured data range from hydraulic and electric actuators up to combustion engines. Real experimental data is also provided on the Springer webpage, allowing readers to gather their first experience with the methods presented in this book. Among others, the book covers the following subjects: determination of the non-parametric frequency response, (fast) Fourier transform, correlation analysis, parameter estimation with a focus on the method of Least Squares and modifications, identification of time-variant processes, identification in closed-loop, identification of continuous time processes, and subspace methods. Some methods for nonlinear system identification are also considered, such as the Extended Kalman filter and neural networks. The different methods are compared by using a real three-mass oscillator process, a model of a drive train. For many identification methods, hints for the practical implementation and application are provided. The book is intended to meet the needs of students and practicing engineers working in research and development, design and manufacturing.
Publisher: Springer
ISBN: 9783540871552
Category : Technology & Engineering
Languages : en
Pages : 705
Book Description
Precise dynamic models of processes are required for many applications, ranging from control engineering to the natural sciences and economics. Frequently, such precise models cannot be derived using theoretical considerations alone. Therefore, they must be determined experimentally. This book treats the determination of dynamic models based on measurements taken at the process, which is known as system identification or process identification. Both offline and online methods are presented, i.e. methods that post-process the measured data as well as methods that provide models during the measurement. The book is theory-oriented and application-oriented and most methods covered have been used successfully in practical applications for many different processes. Illustrative examples in this book with real measured data range from hydraulic and electric actuators up to combustion engines. Real experimental data is also provided on the Springer webpage, allowing readers to gather their first experience with the methods presented in this book. Among others, the book covers the following subjects: determination of the non-parametric frequency response, (fast) Fourier transform, correlation analysis, parameter estimation with a focus on the method of Least Squares and modifications, identification of time-variant processes, identification in closed-loop, identification of continuous time processes, and subspace methods. Some methods for nonlinear system identification are also considered, such as the Extended Kalman filter and neural networks. The different methods are compared by using a real three-mass oscillator process, a model of a drive train. For many identification methods, hints for the practical implementation and application are provided. The book is intended to meet the needs of students and practicing engineers working in research and development, design and manufacturing.
Introduction to Differential Equations with Dynamical Systems
Author: Stephen L. Campbell
Publisher: Princeton University Press
ISBN: 1400841321
Category : Mathematics
Languages : en
Pages : 445
Book Description
Many textbooks on differential equations are written to be interesting to the teacher rather than the student. Introduction to Differential Equations with Dynamical Systems is directed toward students. This concise and up-to-date textbook addresses the challenges that undergraduate mathematics, engineering, and science students experience during a first course on differential equations. And, while covering all the standard parts of the subject, the book emphasizes linear constant coefficient equations and applications, including the topics essential to engineering students. Stephen Campbell and Richard Haberman--using carefully worded derivations, elementary explanations, and examples, exercises, and figures rather than theorems and proofs--have written a book that makes learning and teaching differential equations easier and more relevant. The book also presents elementary dynamical systems in a unique and flexible way that is suitable for all courses, regardless of length.
Publisher: Princeton University Press
ISBN: 1400841321
Category : Mathematics
Languages : en
Pages : 445
Book Description
Many textbooks on differential equations are written to be interesting to the teacher rather than the student. Introduction to Differential Equations with Dynamical Systems is directed toward students. This concise and up-to-date textbook addresses the challenges that undergraduate mathematics, engineering, and science students experience during a first course on differential equations. And, while covering all the standard parts of the subject, the book emphasizes linear constant coefficient equations and applications, including the topics essential to engineering students. Stephen Campbell and Richard Haberman--using carefully worded derivations, elementary explanations, and examples, exercises, and figures rather than theorems and proofs--have written a book that makes learning and teaching differential equations easier and more relevant. The book also presents elementary dynamical systems in a unique and flexible way that is suitable for all courses, regardless of length.
Method of Variation of Parameters for Dynamic Systems
Author: V. Lakshmikantham
Publisher: Routledge
ISBN: 1351431951
Category : Mathematics
Languages : en
Pages : 330
Book Description
Method of Variation of Parameters for Dynamic Systems presents a systematic and unified theory of the development of the theory of the method of variation of parameters, its unification with Lyapunov's method and typical applications of these methods. No other attempt has been made to bring all the available literature into one volume. This book is a clear exposition of this important topic in control theory, which is not covered by any other text. Such an exposition finally enables the comparison and contrast of the theory and the applications, thus facilitating further development in this fascinating field.
Publisher: Routledge
ISBN: 1351431951
Category : Mathematics
Languages : en
Pages : 330
Book Description
Method of Variation of Parameters for Dynamic Systems presents a systematic and unified theory of the development of the theory of the method of variation of parameters, its unification with Lyapunov's method and typical applications of these methods. No other attempt has been made to bring all the available literature into one volume. This book is a clear exposition of this important topic in control theory, which is not covered by any other text. Such an exposition finally enables the comparison and contrast of the theory and the applications, thus facilitating further development in this fascinating field.
Ordinary Differential Equations and Dynamical Systems
Author: Gerald Teschl
Publisher: American Mathematical Society
ISBN: 147047641X
Category : Mathematics
Languages : en
Pages : 370
Book Description
This book provides a self-contained introduction to ordinary differential equations and dynamical systems suitable for beginning graduate students. The first part begins with some simple examples of explicitly solvable equations and a first glance at qualitative methods. Then the fundamental results concerning the initial value problem are proved: existence, uniqueness, extensibility, dependence on initial conditions. Furthermore, linear equations are considered, including the Floquet theorem, and some perturbation results. As somewhat independent topics, the Frobenius method for linear equations in the complex domain is established and Sturm–Liouville boundary value problems, including oscillation theory, are investigated. The second part introduces the concept of a dynamical system. The Poincaré–Bendixson theorem is proved, and several examples of planar systems from classical mechanics, ecology, and electrical engineering are investigated. Moreover, attractors, Hamiltonian systems, the KAM theorem, and periodic solutions are discussed. Finally, stability is studied, including the stable manifold and the Hartman–Grobman theorem for both continuous and discrete systems. The third part introduces chaos, beginning with the basics for iterated interval maps and ending with the Smale–Birkhoff theorem and the Melnikov method for homoclinic orbits. The text contains almost three hundred exercises. Additionally, the use of mathematical software systems is incorporated throughout, showing how they can help in the study of differential equations.
Publisher: American Mathematical Society
ISBN: 147047641X
Category : Mathematics
Languages : en
Pages : 370
Book Description
This book provides a self-contained introduction to ordinary differential equations and dynamical systems suitable for beginning graduate students. The first part begins with some simple examples of explicitly solvable equations and a first glance at qualitative methods. Then the fundamental results concerning the initial value problem are proved: existence, uniqueness, extensibility, dependence on initial conditions. Furthermore, linear equations are considered, including the Floquet theorem, and some perturbation results. As somewhat independent topics, the Frobenius method for linear equations in the complex domain is established and Sturm–Liouville boundary value problems, including oscillation theory, are investigated. The second part introduces the concept of a dynamical system. The Poincaré–Bendixson theorem is proved, and several examples of planar systems from classical mechanics, ecology, and electrical engineering are investigated. Moreover, attractors, Hamiltonian systems, the KAM theorem, and periodic solutions are discussed. Finally, stability is studied, including the stable manifold and the Hartman–Grobman theorem for both continuous and discrete systems. The third part introduces chaos, beginning with the basics for iterated interval maps and ending with the Smale–Birkhoff theorem and the Melnikov method for homoclinic orbits. The text contains almost three hundred exercises. Additionally, the use of mathematical software systems is incorporated throughout, showing how they can help in the study of differential equations.
Differential Equations and Dynamical Systems
Author: Lawrence Perko
Publisher: Springer Science & Business Media
ISBN: 1468402498
Category : Mathematics
Languages : en
Pages : 530
Book Description
Mathematics is playing an ever more important role in the physical and biological sciences, provoking a blurring of boundaries between scientific disciplines and a resurgence bf interest in the modern as well as the clas sical techniques of applied mathematics. This renewal of interest, both in research and teaching, has led to the establishment of the series: Texts in Applied Mat!!ematics (TAM). The development of new courses is a natural consequence of a high level of excitement oil the research frontier as newer techniques, such as numerical and symbolic cotnputer systems, dynamical systems, and chaos, mix with and reinforce the traditional methods of applied mathematics. Thus, the purpose of this textbook series is to meet the current and future needs of these advances and encourage the teaching of new courses. TAM will publish textbooks suitable for use in advanced undergraduate and beginning graduate courses, and will complement the Applied Math ematical Sciences (AMS) series, which will focus on advanced textbooks and research level monographs. Preface to the Second Edition This book covers those topics necessary for a clear understanding of the qualitative theory of ordinary differential equations and the concept of a dynamical system. It is written for advanced undergraduates and for beginning graduate students. It begins with a study of linear systems of ordinary differential equations, a topic already familiar to the student who has completed a first course in differential equations.
Publisher: Springer Science & Business Media
ISBN: 1468402498
Category : Mathematics
Languages : en
Pages : 530
Book Description
Mathematics is playing an ever more important role in the physical and biological sciences, provoking a blurring of boundaries between scientific disciplines and a resurgence bf interest in the modern as well as the clas sical techniques of applied mathematics. This renewal of interest, both in research and teaching, has led to the establishment of the series: Texts in Applied Mat!!ematics (TAM). The development of new courses is a natural consequence of a high level of excitement oil the research frontier as newer techniques, such as numerical and symbolic cotnputer systems, dynamical systems, and chaos, mix with and reinforce the traditional methods of applied mathematics. Thus, the purpose of this textbook series is to meet the current and future needs of these advances and encourage the teaching of new courses. TAM will publish textbooks suitable for use in advanced undergraduate and beginning graduate courses, and will complement the Applied Math ematical Sciences (AMS) series, which will focus on advanced textbooks and research level monographs. Preface to the Second Edition This book covers those topics necessary for a clear understanding of the qualitative theory of ordinary differential equations and the concept of a dynamical system. It is written for advanced undergraduates and for beginning graduate students. It begins with a study of linear systems of ordinary differential equations, a topic already familiar to the student who has completed a first course in differential equations.
Differential Equations: From Calculus to Dynamical Systems: Second Edition
Author: Virginia W. Noonburg
Publisher: American Mathematical Soc.
ISBN: 1470463296
Category : Education
Languages : en
Pages : 402
Book Description
A thoroughly modern textbook for the sophomore-level differential equations course. The examples and exercises emphasize modeling not only in engineering and physics but also in applied mathematics and biology. There is an early introduction to numerical methods and, throughout, a strong emphasis on the qualitative viewpoint of dynamical systems. Bifurcations and analysis of parameter variation is a persistent theme. Presuming previous exposure to only two semesters of calculus, necessary linear algebra is developed as needed. The exposition is very clear and inviting. The book would serve well for use in a flipped-classroom pedagogical approach or for self-study for an advanced undergraduate or beginning graduate student. This second edition of Noonburg's best-selling textbook includes two new chapters on partial differential equations, making the book usable for a two-semester sequence in differential equations. It includes exercises, examples, and extensive student projects taken from the current mathematical and scientific literature.
Publisher: American Mathematical Soc.
ISBN: 1470463296
Category : Education
Languages : en
Pages : 402
Book Description
A thoroughly modern textbook for the sophomore-level differential equations course. The examples and exercises emphasize modeling not only in engineering and physics but also in applied mathematics and biology. There is an early introduction to numerical methods and, throughout, a strong emphasis on the qualitative viewpoint of dynamical systems. Bifurcations and analysis of parameter variation is a persistent theme. Presuming previous exposure to only two semesters of calculus, necessary linear algebra is developed as needed. The exposition is very clear and inviting. The book would serve well for use in a flipped-classroom pedagogical approach or for self-study for an advanced undergraduate or beginning graduate student. This second edition of Noonburg's best-selling textbook includes two new chapters on partial differential equations, making the book usable for a two-semester sequence in differential equations. It includes exercises, examples, and extensive student projects taken from the current mathematical and scientific literature.
Optimal Estimation of Dynamic Systems, Second Edition
Author: John L. Crassidis
Publisher: CRC Press
ISBN: 1439839859
Category : Mathematics
Languages : en
Pages : 752
Book Description
Optimal Estimation of Dynamic Systems, Second Edition highlights the importance of both physical and numerical modeling in solving dynamics-based estimation problems found in engineering systems. Accessible to engineering students, applied mathematicians, and practicing engineers, the text presents the central concepts and methods of optimal estimation theory and applies the methods to problems with varying degrees of analytical and numerical difficulty. Different approaches are often compared to show their absolute and relative utility. The authors also offer prototype algorithms to stimulate the development and proper use of efficient computer programs. MATLAB® codes for the examples are available on the book’s website. New to the Second Edition With more than 100 pages of new material, this reorganized edition expands upon the best-selling original to include comprehensive developments and updates. It incorporates new theoretical results, an entirely new chapter on advanced sequential state estimation, and additional examples and exercises. An ideal self-study guide for practicing engineers as well as senior undergraduate and beginning graduate students, the book introduces the fundamentals of estimation and helps newcomers to understand the relationships between the estimation and modeling of dynamical systems. It also illustrates the application of the theory to real-world situations, such as spacecraft attitude determination, GPS navigation, orbit determination, and aircraft tracking.
Publisher: CRC Press
ISBN: 1439839859
Category : Mathematics
Languages : en
Pages : 752
Book Description
Optimal Estimation of Dynamic Systems, Second Edition highlights the importance of both physical and numerical modeling in solving dynamics-based estimation problems found in engineering systems. Accessible to engineering students, applied mathematicians, and practicing engineers, the text presents the central concepts and methods of optimal estimation theory and applies the methods to problems with varying degrees of analytical and numerical difficulty. Different approaches are often compared to show their absolute and relative utility. The authors also offer prototype algorithms to stimulate the development and proper use of efficient computer programs. MATLAB® codes for the examples are available on the book’s website. New to the Second Edition With more than 100 pages of new material, this reorganized edition expands upon the best-selling original to include comprehensive developments and updates. It incorporates new theoretical results, an entirely new chapter on advanced sequential state estimation, and additional examples and exercises. An ideal self-study guide for practicing engineers as well as senior undergraduate and beginning graduate students, the book introduces the fundamentals of estimation and helps newcomers to understand the relationships between the estimation and modeling of dynamical systems. It also illustrates the application of the theory to real-world situations, such as spacecraft attitude determination, GPS navigation, orbit determination, and aircraft tracking.
Elements of Applied Bifurcation Theory
Author: Yuri Kuznetsov
Publisher: Springer Science & Business Media
ISBN: 1475739788
Category : Mathematics
Languages : en
Pages : 648
Book Description
Providing readers with a solid basis in dynamical systems theory, as well as explicit procedures for application of general mathematical results to particular problems, the focus here is on efficient numerical implementations of the developed techniques. The book is designed for advanced undergraduates or graduates in applied mathematics, as well as for Ph.D. students and researchers in physics, biology, engineering, and economics who use dynamical systems as model tools in their studies. A moderate mathematical background is assumed, and, whenever possible, only elementary mathematical tools are used. This new edition preserves the structure of the first while updating the context to incorporate recent theoretical developments, in particular new and improved numerical methods for bifurcation analysis.
Publisher: Springer Science & Business Media
ISBN: 1475739788
Category : Mathematics
Languages : en
Pages : 648
Book Description
Providing readers with a solid basis in dynamical systems theory, as well as explicit procedures for application of general mathematical results to particular problems, the focus here is on efficient numerical implementations of the developed techniques. The book is designed for advanced undergraduates or graduates in applied mathematics, as well as for Ph.D. students and researchers in physics, biology, engineering, and economics who use dynamical systems as model tools in their studies. A moderate mathematical background is assumed, and, whenever possible, only elementary mathematical tools are used. This new edition preserves the structure of the first while updating the context to incorporate recent theoretical developments, in particular new and improved numerical methods for bifurcation analysis.