Author:
Publisher: Elsevier
ISBN: 0323939414
Category : Science
Languages : en
Pages : 4061
Book Description
Encyclopedia of Renewable Energy, Sustainability and the Environment, Four Volume Set comprehensively covers all renewable energy resources, including wind, solar, hydro, biomass, geothermal energy, and nuclear power, to name a few. In addition to covering the breadth of renewable energy resources at a fundamental level, this encyclopedia delves into the utilization and ideal applications of each resource and assesses them from environmental, economic, and policy standpoints. This book will serve as an ideal introduction to any renewable energy source for students, while also allowing them to learn about a topic in more depth and explore related topics, all in a single resource.Instructors, researchers, and industry professionals will also benefit from this comprehensive reference. - Covers all renewable energy technologies in one comprehensive resource - Details renewable energies' processes, from production to utilization in a single encyclopedia - Organizes topics into concise, consistently formatted chapters, perfect for readers who are new to the field - Assesses economic challenges faced to implement each type of renewable energy - Addresses the challenges of replacing fossil fuels with renewables and covers the environmental impacts of each renewable energy
Encyclopedia of Renewable Energy, Sustainability and the Environment
Author:
Publisher: Elsevier
ISBN: 0323939414
Category : Science
Languages : en
Pages : 4061
Book Description
Encyclopedia of Renewable Energy, Sustainability and the Environment, Four Volume Set comprehensively covers all renewable energy resources, including wind, solar, hydro, biomass, geothermal energy, and nuclear power, to name a few. In addition to covering the breadth of renewable energy resources at a fundamental level, this encyclopedia delves into the utilization and ideal applications of each resource and assesses them from environmental, economic, and policy standpoints. This book will serve as an ideal introduction to any renewable energy source for students, while also allowing them to learn about a topic in more depth and explore related topics, all in a single resource.Instructors, researchers, and industry professionals will also benefit from this comprehensive reference. - Covers all renewable energy technologies in one comprehensive resource - Details renewable energies' processes, from production to utilization in a single encyclopedia - Organizes topics into concise, consistently formatted chapters, perfect for readers who are new to the field - Assesses economic challenges faced to implement each type of renewable energy - Addresses the challenges of replacing fossil fuels with renewables and covers the environmental impacts of each renewable energy
Publisher: Elsevier
ISBN: 0323939414
Category : Science
Languages : en
Pages : 4061
Book Description
Encyclopedia of Renewable Energy, Sustainability and the Environment, Four Volume Set comprehensively covers all renewable energy resources, including wind, solar, hydro, biomass, geothermal energy, and nuclear power, to name a few. In addition to covering the breadth of renewable energy resources at a fundamental level, this encyclopedia delves into the utilization and ideal applications of each resource and assesses them from environmental, economic, and policy standpoints. This book will serve as an ideal introduction to any renewable energy source for students, while also allowing them to learn about a topic in more depth and explore related topics, all in a single resource.Instructors, researchers, and industry professionals will also benefit from this comprehensive reference. - Covers all renewable energy technologies in one comprehensive resource - Details renewable energies' processes, from production to utilization in a single encyclopedia - Organizes topics into concise, consistently formatted chapters, perfect for readers who are new to the field - Assesses economic challenges faced to implement each type of renewable energy - Addresses the challenges of replacing fossil fuels with renewables and covers the environmental impacts of each renewable energy
Electrochemical Activation of Catalysis
Author: Costas G. Vayenas
Publisher: Springer Science & Business Media
ISBN: 0306475510
Category : Science
Languages : en
Pages : 597
Book Description
I knew nothing of the work of C. G. Vayenas on NEMCA until the early nineties. Then I learned from a paper of his idea (gas interface reactions could be catalyzed electrochemically), which seemed quite marvelous; but I did not understand how it worked. Consequently, I decided to correspond with Professor Vayenas in Patras, Greece, to reach a better understanding of this concept. I think that my early papers (1946, 1947, and 1957), on the relationship between the work function of metal surfaces and electron transfer reactions thereat to particles in solution, held me in good stead to be receptive to what Vayenas told me. As the electrode potential changes, so of course, does the work function at the interface, and gas metal reactions there involve adsorbed particles which have bonding to the surface. Whether electron transfer is complete in such a case, or whether the effect is on the desorption of radicals, the work function determines the strength of their bonding, and if one varies the work function by varying the electrode potential, one can vary the reaction rate at the interface. I got the idea. After that, it has been smooth sailing. Dr. Vayenas wrote a seminal article in Modern Aspects of Electrochemistry, Number 29, and brought the field into the public eye. It has since grown and its usefulness in chemical catalytic reactions has been demonstrated and verified worldwide.
Publisher: Springer Science & Business Media
ISBN: 0306475510
Category : Science
Languages : en
Pages : 597
Book Description
I knew nothing of the work of C. G. Vayenas on NEMCA until the early nineties. Then I learned from a paper of his idea (gas interface reactions could be catalyzed electrochemically), which seemed quite marvelous; but I did not understand how it worked. Consequently, I decided to correspond with Professor Vayenas in Patras, Greece, to reach a better understanding of this concept. I think that my early papers (1946, 1947, and 1957), on the relationship between the work function of metal surfaces and electron transfer reactions thereat to particles in solution, held me in good stead to be receptive to what Vayenas told me. As the electrode potential changes, so of course, does the work function at the interface, and gas metal reactions there involve adsorbed particles which have bonding to the surface. Whether electron transfer is complete in such a case, or whether the effect is on the desorption of radicals, the work function determines the strength of their bonding, and if one varies the work function by varying the electrode potential, one can vary the reaction rate at the interface. I got the idea. After that, it has been smooth sailing. Dr. Vayenas wrote a seminal article in Modern Aspects of Electrochemistry, Number 29, and brought the field into the public eye. It has since grown and its usefulness in chemical catalytic reactions has been demonstrated and verified worldwide.
Molecular Spectroscopy of Oxide Catalyst Surfaces
Author: Anatoli Davydov
Publisher: John Wiley & Sons
ISBN:
Category : Science
Languages : en
Pages : 706
Book Description
As in the study of transition metal complexes in solution, molecular spectroscopic methods - principally the infrared, ultraviolet/visible and electron spin resonance spectroscopies - have played key roles in establishing the concepts of coordination chemistry occurring at the surfaces of solids. This book describes the development of the principals of coordination chemistry of oxide surfaces using analyses of data obtained by these methods. The nature, properties, concentration of the surface adsorption centers and their influence on the character of interaction with different molecules are investigated. The book commences with an account of the basic theoretical principles and experimental techniques of the various spectroscopy methods, with special attention devoted to in situ measurements where the oxide or catalyst sample is in contact with the adsorbate or the reactant. A detailed account is presented of the methods for characterizing the oxidation state and degree of coordination of surface cations and oxygen anions by the adsorption of probe molecules. The complexation of many inorganic, organometallic and organic molecules with different oxide systems is critically examined, and a classification of formed surface compounds, based on the interaction with definite type of adsorption centers, is given. Possible mechanisms of numerous catalytic reactions, including the transformation of organic molecules over acidic catalysts via the carboionic mechanism, are discussed using the spectroscopic identifications of reaction intermediates. A comprehensive analysis of the literature on the interpretation of the spectra of surface compounds on oxides is presented. This highly illustrated and extensively referenced volume is intended for specialists working in the fields of surface physical chemistry, surface and materials sciences, and adsorption phenomena and is essential reading for those involved in the heterogeneous catalysis by transition metal-oxides.
Publisher: John Wiley & Sons
ISBN:
Category : Science
Languages : en
Pages : 706
Book Description
As in the study of transition metal complexes in solution, molecular spectroscopic methods - principally the infrared, ultraviolet/visible and electron spin resonance spectroscopies - have played key roles in establishing the concepts of coordination chemistry occurring at the surfaces of solids. This book describes the development of the principals of coordination chemistry of oxide surfaces using analyses of data obtained by these methods. The nature, properties, concentration of the surface adsorption centers and their influence on the character of interaction with different molecules are investigated. The book commences with an account of the basic theoretical principles and experimental techniques of the various spectroscopy methods, with special attention devoted to in situ measurements where the oxide or catalyst sample is in contact with the adsorbate or the reactant. A detailed account is presented of the methods for characterizing the oxidation state and degree of coordination of surface cations and oxygen anions by the adsorption of probe molecules. The complexation of many inorganic, organometallic and organic molecules with different oxide systems is critically examined, and a classification of formed surface compounds, based on the interaction with definite type of adsorption centers, is given. Possible mechanisms of numerous catalytic reactions, including the transformation of organic molecules over acidic catalysts via the carboionic mechanism, are discussed using the spectroscopic identifications of reaction intermediates. A comprehensive analysis of the literature on the interpretation of the spectra of surface compounds on oxides is presented. This highly illustrated and extensively referenced volume is intended for specialists working in the fields of surface physical chemistry, surface and materials sciences, and adsorption phenomena and is essential reading for those involved in the heterogeneous catalysis by transition metal-oxides.
Computational Catalysis
Author: Aravind Asthagiri
Publisher: Royal Society of Chemistry
ISBN: 1849734518
Category : Science
Languages : en
Pages : 277
Book Description
This book presents a comprehensive review of the methods and approaches being adopted to push forward the boundaries of computational catalysis.
Publisher: Royal Society of Chemistry
ISBN: 1849734518
Category : Science
Languages : en
Pages : 277
Book Description
This book presents a comprehensive review of the methods and approaches being adopted to push forward the boundaries of computational catalysis.
Plasma Catalysis
Author: Annemie Bogaerts
Publisher: MDPI
ISBN: 3038977500
Category : Technology & Engineering
Languages : en
Pages : 248
Book Description
Plasma catalysis is gaining increasing interest for various gas conversion applications, such as CO2 conversion into value-added chemicals and fuels, N2 fixation for the synthesis of NH3 or NOx, methane conversion into higher hydrocarbons or oxygenates. It is also widely used for air pollution control (e.g., VOC remediation). Plasma catalysis allows thermodynamically difficult reactions to proceed at ambient pressure and temperature, due to activation of the gas molecules by energetic electrons created in the plasma. However, plasma is very reactive but not selective, and thus a catalyst is needed to improve the selectivity. In spite of the growing interest in plasma catalysis, the underlying mechanisms of the (possible) synergy between plasma and catalyst are not yet fully understood. Indeed, plasma catalysis is quite complicated, as the plasma will affect the catalyst and vice versa. Moreover, due to the reactive plasma environment, the most suitable catalysts will probably be different from thermal catalysts. More research is needed to better understand the plasma–catalyst interactions, in order to further improve the applications.
Publisher: MDPI
ISBN: 3038977500
Category : Technology & Engineering
Languages : en
Pages : 248
Book Description
Plasma catalysis is gaining increasing interest for various gas conversion applications, such as CO2 conversion into value-added chemicals and fuels, N2 fixation for the synthesis of NH3 or NOx, methane conversion into higher hydrocarbons or oxygenates. It is also widely used for air pollution control (e.g., VOC remediation). Plasma catalysis allows thermodynamically difficult reactions to proceed at ambient pressure and temperature, due to activation of the gas molecules by energetic electrons created in the plasma. However, plasma is very reactive but not selective, and thus a catalyst is needed to improve the selectivity. In spite of the growing interest in plasma catalysis, the underlying mechanisms of the (possible) synergy between plasma and catalyst are not yet fully understood. Indeed, plasma catalysis is quite complicated, as the plasma will affect the catalyst and vice versa. Moreover, due to the reactive plasma environment, the most suitable catalysts will probably be different from thermal catalysts. More research is needed to better understand the plasma–catalyst interactions, in order to further improve the applications.
Strong Metal-support Interactions
Author: R. T. K. Baker
Publisher:
ISBN:
Category : Science
Languages : en
Pages : 258
Book Description
Publisher:
ISBN:
Category : Science
Languages : en
Pages : 258
Book Description
Greener Fischer-Tropsch Processes
Author: Peter M. Maitlis
Publisher: John Wiley & Sons
ISBN: 3527656855
Category : Science
Languages : en
Pages : 404
Book Description
Greener Fischer-Tropsch Processes How can we use our carbon-based resources in the most responsible manner? How can we most efficiently transform natural gas, coal, or biomass into diesel, jet fuel or gasoline to drive our machines? The Big Questions today are energy-related, and the Fischer-Tropsch process provides industrially tested solutions. This book offers a comprehensive and up-to-date overview of the Fischer-Tropsch process, from the basic science and engineering to commercial issues. It covers industrial, economic, environmental, and fundamental aspects, with a specific focus on “green” concepts such as sustainability, process improvement, waste-reduction, and environmental care. The result is a practical reference for researchers, engineers, and financial analysts working in the energy sector, who are interested in carbon conversion, fuel processing or synthetic fuel technologies. It is also an ideal introductory book on the Fischer-Tropsch process for graduate courses in chemistry and chemical engineering.
Publisher: John Wiley & Sons
ISBN: 3527656855
Category : Science
Languages : en
Pages : 404
Book Description
Greener Fischer-Tropsch Processes How can we use our carbon-based resources in the most responsible manner? How can we most efficiently transform natural gas, coal, or biomass into diesel, jet fuel or gasoline to drive our machines? The Big Questions today are energy-related, and the Fischer-Tropsch process provides industrially tested solutions. This book offers a comprehensive and up-to-date overview of the Fischer-Tropsch process, from the basic science and engineering to commercial issues. It covers industrial, economic, environmental, and fundamental aspects, with a specific focus on “green” concepts such as sustainability, process improvement, waste-reduction, and environmental care. The result is a practical reference for researchers, engineers, and financial analysts working in the energy sector, who are interested in carbon conversion, fuel processing or synthetic fuel technologies. It is also an ideal introductory book on the Fischer-Tropsch process for graduate courses in chemistry and chemical engineering.
Water Gas Shift Reaction
Author: Panagiotis Smirniotis
Publisher: Elsevier
ISBN: 0444633537
Category : Technology & Engineering
Languages : en
Pages : 280
Book Description
Water Gas Shift Reaction: Research Developments and Applications outlines the importance of hydrogen as a future fuel, along with the various hydrogen production methods. The book explains the development of catalysts for Water Gas Shift (WGS) reaction at different temperatures and steam/CO ratios, and also discussing the effect of different dopants on the WGS activity of iron oxide and the promotion and inhibition roles of the dopants on the WGS activity of iron oxide are explained. In addition, the book describes extensive characterization of modified ferrite catalysts, especially with Mossbauer spectroscopy and its advantage in understanding properties of metal doped ferrite catalysts, the exact dopant location, and its effect on electron hopping capability and WGS activity of Fe redox couple. - Outlines the importance of the Water Gas Shift Reaction and its application for hydrogen production - Provides detailed information on potential catalysts, their development, and their pros and cons, giving the reader insights on how modified ferrite catalysts work at different temperatures and different steam to CO ratios - Reviews hydrogen technology, its current importance, and production methods - Presents a clear presentation of the topics with many graphics and tables - Offers basic and advanced knowledge of catalysts characterization instrumental techniques
Publisher: Elsevier
ISBN: 0444633537
Category : Technology & Engineering
Languages : en
Pages : 280
Book Description
Water Gas Shift Reaction: Research Developments and Applications outlines the importance of hydrogen as a future fuel, along with the various hydrogen production methods. The book explains the development of catalysts for Water Gas Shift (WGS) reaction at different temperatures and steam/CO ratios, and also discussing the effect of different dopants on the WGS activity of iron oxide and the promotion and inhibition roles of the dopants on the WGS activity of iron oxide are explained. In addition, the book describes extensive characterization of modified ferrite catalysts, especially with Mossbauer spectroscopy and its advantage in understanding properties of metal doped ferrite catalysts, the exact dopant location, and its effect on electron hopping capability and WGS activity of Fe redox couple. - Outlines the importance of the Water Gas Shift Reaction and its application for hydrogen production - Provides detailed information on potential catalysts, their development, and their pros and cons, giving the reader insights on how modified ferrite catalysts work at different temperatures and different steam to CO ratios - Reviews hydrogen technology, its current importance, and production methods - Presents a clear presentation of the topics with many graphics and tables - Offers basic and advanced knowledge of catalysts characterization instrumental techniques
Nanostructured Catalysts
Author: Susannah L. Scott
Publisher: Springer Science & Business Media
ISBN: 0387306412
Category : Science
Languages : en
Pages : 341
Book Description
With the recent advent of nanotechnology, research and development in the area of nanostructured materials has gained unprecedented prominence. Novel materials with potentially exciting new applications are being discovered at a much higher rate than ever before. Innovative tools to fabricate, manipulate, characterize and evaluate such materials are being developed and expanded. To keep pace with this extremely rapid growth, it is necessary to take a breath from time to time, to critically assess the current knowledge and provide thoughts for future developments. This book represents one of these moments, as a number of prominent scientists in nanostructured materials join forces to provide insightful reviews of their areas of expertise, thus offering an overall picture of the state-- the art of the field. Nanostructured materials designate an increasing number of materials with designed shapes, surfaces, structures, pore systems, etc. Nanostructured materials with modified surfaces include those whose surfaces have been altered via such techniques as grafting and tethering of organic or organometallic species, or through various deposition procedures including electro, electroless and vapor deposition, or simple adsorption. These materials find important applications in catalysis, separation and environmental remediation. Materials with patterned surfaces, which are essential for the optoelectronics industry, constitute another important class of surface-modified nanostructured materials. Other materials are considered nanostructured because of their composition and internal organization.
Publisher: Springer Science & Business Media
ISBN: 0387306412
Category : Science
Languages : en
Pages : 341
Book Description
With the recent advent of nanotechnology, research and development in the area of nanostructured materials has gained unprecedented prominence. Novel materials with potentially exciting new applications are being discovered at a much higher rate than ever before. Innovative tools to fabricate, manipulate, characterize and evaluate such materials are being developed and expanded. To keep pace with this extremely rapid growth, it is necessary to take a breath from time to time, to critically assess the current knowledge and provide thoughts for future developments. This book represents one of these moments, as a number of prominent scientists in nanostructured materials join forces to provide insightful reviews of their areas of expertise, thus offering an overall picture of the state-- the art of the field. Nanostructured materials designate an increasing number of materials with designed shapes, surfaces, structures, pore systems, etc. Nanostructured materials with modified surfaces include those whose surfaces have been altered via such techniques as grafting and tethering of organic or organometallic species, or through various deposition procedures including electro, electroless and vapor deposition, or simple adsorption. These materials find important applications in catalysis, separation and environmental remediation. Materials with patterned surfaces, which are essential for the optoelectronics industry, constitute another important class of surface-modified nanostructured materials. Other materials are considered nanostructured because of their composition and internal organization.
Supported Metal Single Atom Catalysis
Author: Philippe Serp
Publisher: Wiley-VCH
ISBN: 9783527348442
Category : Technology & Engineering
Languages : en
Pages : 688
Book Description
b”Supported Metal Single Atom CatalysisCovers all key aspects of supported metal single atom catalysts, an invaluable resource for academic researchers and industry professionals alike Single atom catalysis is one of the most innovative and dynamic research areas in catalysis science. Supported metal catalysts are used extensively across the chemical industry, ranging from fine and bulk chemical production to petrochemicals. Single atom catalysts (SACs) combine the advantages of both homogeneous and heterogeneous catalysts such as catalyst stability, activity, and high dispersion of the active phase. Supported Metal Single Atom Catalysis provides an authoritative and up-to-date overview of the emerging field, covering the synthesis, preparation, characterization, modeling, and applications of SACs. This comprehensive volume introduces the basic principles of single atom catalysis, describes metal oxide and carbon support materials for SAC preparation, presents characterization techniques and theoretical calculations, and discusses SACs in areas including selective hydrogenation, oxidation reactions, activation of small molecules, C-C bond formation, and biomedical applications. Highlights the activity, selectivity, and stability advantages of supported metal SACs compared to other heterogeneous catalysts Covers applications of SACs in thermal catalysis, electrocatalysis, and photocatalysis Includes chapters on single atom alloys and supported double and triple metal atom catalysts Discusses the prospects, challenges, and potential industrial applications of SACs Supported Metal Single Atom Catalysis is an indispensable reference for all those working in the fields of catalysis, solid-state chemistry, materials science, and spectroscopy, including catalytic chemists, organic chemists, electrochemists, theoretical chemists, and industrial chemists.
Publisher: Wiley-VCH
ISBN: 9783527348442
Category : Technology & Engineering
Languages : en
Pages : 688
Book Description
b”Supported Metal Single Atom CatalysisCovers all key aspects of supported metal single atom catalysts, an invaluable resource for academic researchers and industry professionals alike Single atom catalysis is one of the most innovative and dynamic research areas in catalysis science. Supported metal catalysts are used extensively across the chemical industry, ranging from fine and bulk chemical production to petrochemicals. Single atom catalysts (SACs) combine the advantages of both homogeneous and heterogeneous catalysts such as catalyst stability, activity, and high dispersion of the active phase. Supported Metal Single Atom Catalysis provides an authoritative and up-to-date overview of the emerging field, covering the synthesis, preparation, characterization, modeling, and applications of SACs. This comprehensive volume introduces the basic principles of single atom catalysis, describes metal oxide and carbon support materials for SAC preparation, presents characterization techniques and theoretical calculations, and discusses SACs in areas including selective hydrogenation, oxidation reactions, activation of small molecules, C-C bond formation, and biomedical applications. Highlights the activity, selectivity, and stability advantages of supported metal SACs compared to other heterogeneous catalysts Covers applications of SACs in thermal catalysis, electrocatalysis, and photocatalysis Includes chapters on single atom alloys and supported double and triple metal atom catalysts Discusses the prospects, challenges, and potential industrial applications of SACs Supported Metal Single Atom Catalysis is an indispensable reference for all those working in the fields of catalysis, solid-state chemistry, materials science, and spectroscopy, including catalytic chemists, organic chemists, electrochemists, theoretical chemists, and industrial chemists.