Metal Oxide Nanoparticles in Complex Environments PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Metal Oxide Nanoparticles in Complex Environments PDF full book. Access full book title Metal Oxide Nanoparticles in Complex Environments by Irem Bahanur Ustunol. Download full books in PDF and EPUB format.

Metal Oxide Nanoparticles in Complex Environments

Metal Oxide Nanoparticles in Complex Environments PDF Author: Irem Bahanur Ustunol
Publisher:
ISBN:
Category :
Languages : en
Pages : 223

Book Description
Nanoscience and nanotechnology are research areas that have shown great promise towards addressing clean and sustainable energy, environmental protection, and human health. Metal oxide nanoparticles are widely used in various applications, including removing pollutants from contaminated water, tracking cancer cell growth, targeted drug delivery. These nanoparticles are highly reactive, and their abundance in the environment brings potential concerns to their exposure, leading to increased interactions with biomolecules that have impactful environmental and health effects. Ecological systems have multi-components, including natural organic matter, oxyanions, and biological macromolecules; biological systems also contain complexity as proteins and nutrients can all be found at the nanomaterial-water interface upon nanoparticle exposure. Although significant research has been pursued on the surface transformations of metal oxide nanoparticles, multi-component adsorption kinetics, changes in adsorbate structure, and the impacts on the nanomaterial properties in complex environments remain unclear. Once nanoparticles are introduced in complex aqueous biological and environmental systems, proteins adsorb onto their surfaces and form a dynamic layer termed "corona." Newly occurred corona may change the nanoparticle interfacial state and its biological and ecological identity. If altered, the new identity influences the nanoparticle fate within the surrounding complex media. Details of protein and amino acid (building block of proteins) interactions with nanoparticles and substantial structural change on nanoparticle surfaces remain unclear. These processes can be affected by various factors due to the complexities of nano-bio surface interactions. Therefore, it is necessary to study multiple parameters individually, and a systematic study on the impacts of influential factors on the adsorption at the nano-bio interface is strongly desired. The research presented in this dissertation pursues a greater understanding of metal oxide nanoparticle characterizations, implications, and biomolecule-nanoparticle interactions from studies of amino acid and protein adsorption. Nanoparticle- and environmental-related factors, including effects of pH, nanoparticle-type, biomolecule concentration, pre-adsorbed phosphate and lipopolysaccharides, and nanoparticle production in a workplace environment (occupational health study), were investigated. We studied the influencing factors of the complex environment individually to examine each aspect in detail. Attenuated Total Reflectance-Fourier Transform Infrared Spectroscopy (ATR-FTIR), as well as various microscopic and spectroscopic tools, were employed to help better understand the impact of these factors. In this dissertation, adsorption of [alpha]-amino acids, lysine, glutamic acid, glycine, and serine, onto TiO2 nanoparticles in buffered solutions was determined. The predominant molecular surface species and the adsorption affinity were highly pH-dependent. Adsorption of lysine and glycine were increased proportionally with changes in pH, whereas glutamic acid adsorption decreased with increasing pH. We attributed these differences to the functional groups of different species and the TiO2 surface charge at each pH. Furthermore, the effects of nanoparticle type and amino acid concentration on the mechanisms of amino acids, lysine, glutamic acid, aspartic acid, and arginine, adsorption on [alpha]-Fe2O3 nanoparticles were investigated. The detailed chemistry in the adsorption processes implied the formation of outer-sphere and inner-sphere complex differences between different nanomaterials. Combined in-situ ATR-FTIR and curve-fitting provides insights and a greater understanding of changes in secondary structures of bovine serum albumin (BSA) and [beta]-lactoglobulin ([beta]-LG) upon adsorbed onto [alpha]-Fe2O3 nanoparticles in the presence and absence of co-adsorbed phosphate. The results indicated that structural changes were time-dependent, and the existence of pre-adsorbed phosphate influenced adsorption and desorption kinetics. An additional part of this work showed that pre-adsorbed lipopolysaccharide additionally played a role in the interaction of Immunoglobulin G (IgG) adsorbed onto [alpha]-Fe2O3 nanoparticles. In agreement with the [beta]-LG adsorption, a significant change in Amide I/II ratio was observed for adsorbed IgG, indicating changes in the protein secondary structure compared to the solution phase. Deconvolution analyses revealed that the [alpha]-helix content of the adsorbed IgG was higher than the unbound conformation in the presence of lipopolysaccharides. Moreover, to complement our understanding of protein and amino acid adsorption, we also investigated airborne nanoparticle presence in different production sites in an occupational health study. Identified nanoparticles in these settings were characterized by two forms: sub-micrometer fractal-like agglomerates from activities such as welding; and super-micrometer particles (nanoparticle collectors) with nanoparticles coagulated on their surfaces. These agglomerates were proposed to affect deposition and transport inside the respiratory system. The respirable incidental nanoparticles would have corresponding health implications regarding their primary and/or secondary sites of uptake. Overall, the research in this dissertation provides essential insights into understanding the behavior of metal oxide nanoparticles in complex environments. Studies on amino acid and protein adsorption, along with the detailed characterization of the nano-bio interface with spectroscopic and microscopic methods, allowed us to understand the effects of a multitude of influences on biomolecule-nanoparticle surface interactions.

Metal Oxide Nanoparticles in Complex Environments

Metal Oxide Nanoparticles in Complex Environments PDF Author: Irem Bahanur Ustunol
Publisher:
ISBN:
Category :
Languages : en
Pages : 223

Book Description
Nanoscience and nanotechnology are research areas that have shown great promise towards addressing clean and sustainable energy, environmental protection, and human health. Metal oxide nanoparticles are widely used in various applications, including removing pollutants from contaminated water, tracking cancer cell growth, targeted drug delivery. These nanoparticles are highly reactive, and their abundance in the environment brings potential concerns to their exposure, leading to increased interactions with biomolecules that have impactful environmental and health effects. Ecological systems have multi-components, including natural organic matter, oxyanions, and biological macromolecules; biological systems also contain complexity as proteins and nutrients can all be found at the nanomaterial-water interface upon nanoparticle exposure. Although significant research has been pursued on the surface transformations of metal oxide nanoparticles, multi-component adsorption kinetics, changes in adsorbate structure, and the impacts on the nanomaterial properties in complex environments remain unclear. Once nanoparticles are introduced in complex aqueous biological and environmental systems, proteins adsorb onto their surfaces and form a dynamic layer termed "corona." Newly occurred corona may change the nanoparticle interfacial state and its biological and ecological identity. If altered, the new identity influences the nanoparticle fate within the surrounding complex media. Details of protein and amino acid (building block of proteins) interactions with nanoparticles and substantial structural change on nanoparticle surfaces remain unclear. These processes can be affected by various factors due to the complexities of nano-bio surface interactions. Therefore, it is necessary to study multiple parameters individually, and a systematic study on the impacts of influential factors on the adsorption at the nano-bio interface is strongly desired. The research presented in this dissertation pursues a greater understanding of metal oxide nanoparticle characterizations, implications, and biomolecule-nanoparticle interactions from studies of amino acid and protein adsorption. Nanoparticle- and environmental-related factors, including effects of pH, nanoparticle-type, biomolecule concentration, pre-adsorbed phosphate and lipopolysaccharides, and nanoparticle production in a workplace environment (occupational health study), were investigated. We studied the influencing factors of the complex environment individually to examine each aspect in detail. Attenuated Total Reflectance-Fourier Transform Infrared Spectroscopy (ATR-FTIR), as well as various microscopic and spectroscopic tools, were employed to help better understand the impact of these factors. In this dissertation, adsorption of [alpha]-amino acids, lysine, glutamic acid, glycine, and serine, onto TiO2 nanoparticles in buffered solutions was determined. The predominant molecular surface species and the adsorption affinity were highly pH-dependent. Adsorption of lysine and glycine were increased proportionally with changes in pH, whereas glutamic acid adsorption decreased with increasing pH. We attributed these differences to the functional groups of different species and the TiO2 surface charge at each pH. Furthermore, the effects of nanoparticle type and amino acid concentration on the mechanisms of amino acids, lysine, glutamic acid, aspartic acid, and arginine, adsorption on [alpha]-Fe2O3 nanoparticles were investigated. The detailed chemistry in the adsorption processes implied the formation of outer-sphere and inner-sphere complex differences between different nanomaterials. Combined in-situ ATR-FTIR and curve-fitting provides insights and a greater understanding of changes in secondary structures of bovine serum albumin (BSA) and [beta]-lactoglobulin ([beta]-LG) upon adsorbed onto [alpha]-Fe2O3 nanoparticles in the presence and absence of co-adsorbed phosphate. The results indicated that structural changes were time-dependent, and the existence of pre-adsorbed phosphate influenced adsorption and desorption kinetics. An additional part of this work showed that pre-adsorbed lipopolysaccharide additionally played a role in the interaction of Immunoglobulin G (IgG) adsorbed onto [alpha]-Fe2O3 nanoparticles. In agreement with the [beta]-LG adsorption, a significant change in Amide I/II ratio was observed for adsorbed IgG, indicating changes in the protein secondary structure compared to the solution phase. Deconvolution analyses revealed that the [alpha]-helix content of the adsorbed IgG was higher than the unbound conformation in the presence of lipopolysaccharides. Moreover, to complement our understanding of protein and amino acid adsorption, we also investigated airborne nanoparticle presence in different production sites in an occupational health study. Identified nanoparticles in these settings were characterized by two forms: sub-micrometer fractal-like agglomerates from activities such as welding; and super-micrometer particles (nanoparticle collectors) with nanoparticles coagulated on their surfaces. These agglomerates were proposed to affect deposition and transport inside the respiratory system. The respirable incidental nanoparticles would have corresponding health implications regarding their primary and/or secondary sites of uptake. Overall, the research in this dissertation provides essential insights into understanding the behavior of metal oxide nanoparticles in complex environments. Studies on amino acid and protein adsorption, along with the detailed characterization of the nano-bio interface with spectroscopic and microscopic methods, allowed us to understand the effects of a multitude of influences on biomolecule-nanoparticle surface interactions.

Metal Oxide Nanoparticles

Metal Oxide Nanoparticles PDF Author: Oliver Diwald
Publisher: John Wiley & Sons
ISBN: 1119436761
Category : Technology & Engineering
Languages : en
Pages : 903

Book Description
Ein umfassendes Referenzwerk für Chemiker und Industriefachleute zum Thema Nanopartikel Nanopartikel aus Metalloxid sind ein wesentlicher Bestandteil zahlreicher natürlicher und technologischer Prozesse ? von der Mineralumwandlung bis zur Elektronik. Darüber hinaus kommen Metalloxid-Nanopartikel in Pulverform im Maschinenbau, in der Elektronik und der Energietechnik zum Einsatz. Das Werk Metal Oxide Nanoparticles: Formation, Functional Properties and Interfaces stellt die wichtigsten Synthese- und Formulierungsansätze bei der Nutzung von Metalloxid-Nanopartikeln als Funktionsmaterialien vor. Es werden die üblichen Verarbeitungswege erklärt und die physikalischen und chemischen Eigenschaften der Partikel mithilfe von umfassenden und ergänzenden Charakterisierungsmethoden bewertet. Dieses Werk kann als Einführung in die Formulierung von Nanopartikeln, ihre Grenzflächenchemie und ihre funktionellen Eigenschaften im Nanobereich genutzt werden. Darüber hinaus dient es zum vertiefenden Verständnis, denn das Buch enthält detaillierte Angaben zu fortschrittlichen Methoden bei der physikalischen, chemischen, Oberflächen- und Grenzflächencharakterisierung von Metalloxid-Nanopartikeln in Pulvern und Dispersionen. *Erläuterung der Anwendung von Metalloxid-Nanopartikeln und der wirtschaftlichen Auswirkungen *Betrachtung der Partikelsynthese, einschließlich der Grundsätze ausgewählter Bottom-up-Strategien *Untersuchung der Formulierung von Nanopartikeln mit einer Auswahl von Verarbeitungs- und Anwendungswegen *Diskussion der Bedeutung von Partikeloberflächen und -grenzflächen für Strukturbildung, Stabilität und funktionelle Materialeigenschaften *Betrachtung der Charakterisierung von Metalloxid-Nanopartikeln auf verschiedenen Längenskalen In diesem Buch finden Forscher im akademischen Bereich, Chemiker in der Industrie und Doktoranden wichtige Erkenntnisse über die Synthese, Eigenschaften und Anwendungen von Metalloxid-Nanopartikeln.

Characterization of Nanomaterials in Complex Environmental and Biological Media

Characterization of Nanomaterials in Complex Environmental and Biological Media PDF Author:
Publisher: Elsevier
ISBN: 0080999506
Category : Technology & Engineering
Languages : en
Pages : 321

Book Description
Characterization of Nanomaterials in Complex Environmental and Biological Media covers the novel properties of nanomaterials and their applications to consumer products and industrial processes. The book fills the growing gap in this challenging area, bringing together disparate strands in chemistry, physics, biology, and other relevant disciplines. It provides an overview on nanotechnology, nanomaterials, nano(eco)toxicology, and nanomaterial characterization, focusing on the characterization of a range of nanomaterial physicochemical properties of relevance to environmental and toxicological studies and their available analytical techniques. Readers will find a multidisciplinary approach that provides highly skilled scientists, engineers, and technicians with the tools they need to understand and interpret complicated sets of data obtained through sophisticated analytical techniques. Addresses the requirements, challenges, and solutions for nanomaterial characterization in environmentally complex media Focuses on technique limitations, appropriate data collection, data interpretation, and analysis Aids in understanding and comparing nanomaterial characterization data reported in the literature using different analytical tools Includes case studies of characterization relevant complex media to enhance understanding

Multifunctional Nanostructured Metal Oxides for Energy Harvesting and Storage Devices

Multifunctional Nanostructured Metal Oxides for Energy Harvesting and Storage Devices PDF Author: Vijay B. Pawade
Publisher: CRC Press
ISBN: 1000073203
Category : Business & Economics
Languages : en
Pages : 280

Book Description
Metal oxide nanoparticles exhibit potential applications in energy and environmental fields, such as solar cells, fuel cells, hydrogen energy, and energy storage devices. This book covers all points from synthesis, properties, and applications of transition metal oxide nanoparticle materials in energy storage and conversion devices. Aimed at graduate-level students and researchers associated with the energy and environment sector, this book addresses the application of nontoxic and environmentally friendly metal oxide materials for a clean environment and deals with synthesis properties and application metal oxides materials for energy conversion, energy storage, and hydrogen generation.

Metal and Metal-Oxide Based Nanomaterials

Metal and Metal-Oxide Based Nanomaterials PDF Author: Rakesh Kumar Bachheti
Publisher: Springer Nature
ISBN: 9819976731
Category : Technology & Engineering
Languages : en
Pages : 350

Book Description
The book in hand, namely “Metal and Metal-Oxide Based Nanomaterials (Synthesis, Agricultural, Biomedical and Environmental Interventions”, focuses on the synthesis methods, characterization techniques, and diverse interventions utilizing these nanomaterials in the fields of agriculture, biomedicine, and environmental remediation. The specific applications discussed include food packaging, post-harvest disease management, crop production, drug delivery systems, other biomedical applications, photocatalytic degradation of environmental pollutants, and wastewater treatment. Additionally, it also addresses the potential risks associated with zinc nanoparticles in aquatic ecosystems and emphasizes the importance of further research and regulation in this field. Overall, the book provides valuable insights and serves as a comprehensive resource for researchers and scientists across various interdisciplinary subjects. It serves as a valuable resource for scientists, researchers, and students in nanotechnology, nanomedicine, environmental science, plant science, agriculture, chemistry, biotechnology, pharmacognosy, pharmaceuticals, industrial chemistry, and other interdisciplinary subjects. Moreover, this also inspires further research, innovation, and the development of sustainable solutions for a better future.

Metal Oxide–Based Carbon Nanocomposites for Environmental Remediation and Safety

Metal Oxide–Based Carbon Nanocomposites for Environmental Remediation and Safety PDF Author: Rayees Ahmad Zargar
Publisher: CRC Press
ISBN: 1000904946
Category : Technology & Engineering
Languages : en
Pages : 310

Book Description
This book focuses on nanotechnology for the preparation of metal oxide–based carbon nanocomposite materials for environmental remediation. It analyses the use of nanomaterials for water, soil, and air solutions, emphasizing the environmental risks of pollution. It further explores how magnetic and activated carbon nanomaterials are being used for a sustainable environmental protection of water and soil, and detection of harmful gases. The status and major challenges of using carbon-based nanomaterials on a large scale are explained, supported by relevant case studies. Features: Exhaustively covers nanotechnology, metal oxide–carbon nanocomposites and their application in soil, water, and air treatments Explores pollutants nano-sensing and their remediation towards environmental safety Includes economics analysis and environmental aspects of metal oxide materials Describes why properties of oxide carbon–based nanomaterials are useful for environmental applications Discusses current case studies of remediation technologies This book is aimed at graduate students and researchers in nanotechnology, environmental technology, and remediation.

Engineered Nanoparticles and the Environment

Engineered Nanoparticles and the Environment PDF Author: Baoshan Xing
Publisher: John Wiley & Sons
ISBN: 1119275822
Category : Science
Languages : en
Pages : 506

Book Description
Details the source, release, exposure, adsorption, aggregation, bioavailability, transport, transformation, and modeling of engineered nanoparticles found in many common products and applications Covers synthesis, environmental application, detection, and characterization of engineered nanoparticles Details the toxicity and risk assessment of engineered nanoparticles Includes topics on the transport, transformation, and modeling of engineered nanoparticles Presents the latest developments and knowledge of engineered nanoparticles Written by world leading experts from prestigious universities and companies

Chemical Transformations of Lithium Cobalt Oxide Nanoparticles in Model Environmental Systems

Chemical Transformations of Lithium Cobalt Oxide Nanoparticles in Model Environmental Systems PDF Author: Elizabeth Dina Laudadio
Publisher:
ISBN:
Category :
Languages : en
Pages : 0

Book Description
Complex metal oxides are important nanomaterials for catalysis, energy storage, and water purification. These nanomaterials are being rapidly incorporated into numerous commercial products, however, the potential impact to the environment upon improper disposal is still unknown. A commonly overlooked and largely unknown aspect of assessing the environmental and biological safety of engineered nanomaterials is their transformation in aqueous systems. We present a comprehensive analysis of the interaction of an environmentally relevant oxyanion, phosphate, with a complex metal oxide nanomaterial, lithium cobalt oxide (LiCoO2), through the implementation of complementary in situ analytical techniques to probe the reactions occurring at the nanoparticle-liquid interface. Attenuated total reflectance - FTIR (ATR-FTIR) experiments confirm irreversible adsorption of phosphate to LiCoO2 in a predominantly deprotonated geometry on the surface. Using laser doppler microelectrophoresis, dynamic light scattering, and UV-visible spectroscopy, we show that adsorption of phosphate at environmentally relevant concentrations on LiCoO2 nanoparticles significantly alters their surface charge, and therefore dispersibility in solution. The adsorbed phosphate remains on the surface over significant periods of time, suggesting that desorption is not kinetically favored. Potential implications of this interaction may be increased dispersibility and bioavailability of these materials in environmental water systems. Additional studies present a thermodynamic analysis of phosphate adsorption to LiCoO2 and corroborate the results with additional in situ techniques, including zeta potential measurements and ATR-FTIR spectroscopy, at pH values relevant to potential environmental release scenarios. Flow microcalorimetry measurements of phosphate interaction with LiCoO2 at pH 7.4 show that there are two distinct exothermic processes taking place. Time-sequence in situ ATR-FTIR with two-dimensional correlation analysis reveals the spectroscopic signatures of these processes. We interpret the data as an interaction of phosphate with LiCoO2 that occurs through the release of two water molecules and is therefore, best described as a condensation process rather than a simple adsorption, consistent with prior studies, demonstrating that phosphate interaction with LiCoO2 is highly irreversible. Additional measurements for over longer times of 5 months show that phosphate adsorption terminates with one surface layer and that continued transformation over longer periods of time arises from H+/Li+ exchange and slow transformation to a cobalt hydroxide, with phosphate adsorbed to the surface only. To the best of our knowledge, this is the first time that flow microcalorimetry and two-dimensional correlation analysis have been applied in tandem to clarify the specific chemical reactions that occur at the interface of solids and adsorbates. These studies highlight the power of using multiple in situ techniques in tandem to tackle complex research questions at the nanoparticle-liquid interface, and have opened the door to studies involving more complex systems. Organic molecules, such as small organic acids and natural organic matter are present in environmental water systems, and have the potential to interact competitively with phosphate and other molecules for adsorption to the surface of LiCoO2. We show that the impact of small organic acids on adsorption to, and dissolution of LiCoO2 is controlled at least partially by the hydrophobicity and/or steric hinderance of the molecule. X-ray photoelectron spectroscopy elucidates the competitive interaction between lactic acid and phosphate with the LiCoO2 surface, where the presence of lactic acid results in less coverage of phosphate on the particles.

Green Processes for Nanotechnology

Green Processes for Nanotechnology PDF Author: Vladimir A. Basiuk
Publisher: Springer
ISBN: 3319154613
Category : Technology & Engineering
Languages : en
Pages : 445

Book Description
This book provides the state-of-the-art survey of green techniques in preparation of different classes of nanomaterials, with an emphasis on the use of renewable sources. Key topics covered include fabrication of nanomaterials using green techniques as well as their properties and applications, the use of renewable sources to obtain nanomaterials of different classes, from simple metal and metal oxide nanoparticles to complex bioinspired nanomaterials, economic contributions of nanotechnology to green and sustainable growth, and more. This is an ideal book for students, lecturers, researchers and engineers dealing with versatile (mainly chemical, biological, and medical) aspects of nanotechnology, including fabrication of nanomaterials using green techniques and their properties and applications.

Metal Oxide Nanoparticles, 2 Volume Set

Metal Oxide Nanoparticles, 2 Volume Set PDF Author: Oliver Diwald
Publisher: John Wiley & Sons
ISBN: 1119436745
Category : Technology & Engineering
Languages : de
Pages : 903

Book Description
Metal Oxide Nanoparticles A complete nanoparticle resource for chemists and industry professionals Metal oxide nanoparticles are integral to a wide range of natural and technological processes—from mineral transformation to electronics. Additionally, the fields of engineering, electronics, energy technology, and electronics all utilize metal oxide nanoparticle powders. Metal Oxide Nanoparticles: Formation, Functional Properties, and Interfaces presents readers with the most relevant synthesis and formulation approaches for using metal oxide nanoparticles as functional materials. It covers common processing routes and the assessment of physical and chemical particle properties through comprehensive and complementary characterization methods. This book will serve as an introduction to nanoparticle formulation, their interface chemistry and functional properties at the nanoscale. It will also act as an in-depth resource, sharing detailed information on advanced approaches to the physical, chemical, surface, and interface characterization of metal oxide nanoparticle powders and dispersions. Addresses the application of metal oxide nanoparticles and its economic impact Examines particle synthesis, including the principles of selected bottom-up strategies Explores nanoparticle formulation—a selection of processing and application routes Discusses the significance of particle surfaces and interfaces on structure formation, stability and functional materials properties Covers metal oxide nanoparticle characterization at different length scales With this valuable resource, academic researchers, industrial chemists, and PhD students can all gain insight into the synthesis, properties, and applications of metal oxide nanoparticles.