Author: Simon Silver
Publisher: Springer Science & Business Media
ISBN: 1461559936
Category : Science
Languages : en
Pages : 479
Book Description
This is the first volume on the role of metal ions in regulating genes to focus not only on toxicity effects of metals but also on the role of metal ions in normal metabolisms, in both prokaryotes and in eukaryotes. This book is a comprehensive treatment of the role of metal ions in gene regulation, and it will be of great utility for those doing basic biological and biomedical research.
Metal Ions in Gene Regulation
Author: Simon Silver
Publisher: Springer Science & Business Media
ISBN: 1461559936
Category : Science
Languages : en
Pages : 479
Book Description
This is the first volume on the role of metal ions in regulating genes to focus not only on toxicity effects of metals but also on the role of metal ions in normal metabolisms, in both prokaryotes and in eukaryotes. This book is a comprehensive treatment of the role of metal ions in gene regulation, and it will be of great utility for those doing basic biological and biomedical research.
Publisher: Springer Science & Business Media
ISBN: 1461559936
Category : Science
Languages : en
Pages : 479
Book Description
This is the first volume on the role of metal ions in regulating genes to focus not only on toxicity effects of metals but also on the role of metal ions in normal metabolisms, in both prokaryotes and in eukaryotes. This book is a comprehensive treatment of the role of metal ions in gene regulation, and it will be of great utility for those doing basic biological and biomedical research.
The Nramp Family
Author: Mathieu Cellier
Publisher: Springer Science & Business Media
ISBN: 9780306478413
Category : Science
Languages : en
Pages : 226
Book Description
This book is the first comprehensive volume on the "Nramp family", highlighting the physiological importance of Nramp proteins as metal transporters. The molecular knowledge of these membrane proteins is presented from an evolutionary perspective, considering Nramp cellular function and mechanism of transport in key model organisms. The pathological significance of Nramp genetic polymorphism is discussed with emphasis on metal homeostasis and microbial infection. The chapters were contributed by leading investigators, providing a timely state of the art book in this rapidly growing field. The Nramp Family will be useful to a broad community of scientists interested in metal transport and molecular biology. It will be of interest to the research audience in the broad fields of metal ions and molecular medicine.
Publisher: Springer Science & Business Media
ISBN: 9780306478413
Category : Science
Languages : en
Pages : 226
Book Description
This book is the first comprehensive volume on the "Nramp family", highlighting the physiological importance of Nramp proteins as metal transporters. The molecular knowledge of these membrane proteins is presented from an evolutionary perspective, considering Nramp cellular function and mechanism of transport in key model organisms. The pathological significance of Nramp genetic polymorphism is discussed with emphasis on metal homeostasis and microbial infection. The chapters were contributed by leading investigators, providing a timely state of the art book in this rapidly growing field. The Nramp Family will be useful to a broad community of scientists interested in metal transport and molecular biology. It will be of interest to the research audience in the broad fields of metal ions and molecular medicine.
Metal Complex - DNA Interactions
Author: Nick Hadjiliadis
Publisher: John Wiley & Sons
ISBN: 9781405194105
Category : Science
Languages : en
Pages : 544
Book Description
Metal ions and metal complexes have long been recognized ascritically important components of nucleic acid chemistry, both inregulation of gene expression and as promising therapeutic agents.Understanding how metal complexes interact with DNA has become anactive research area at the interface between chemistry, molecularbiology and medicine. Metal Complex - DNA Interactions provides a comprehensiveoverview of this increasingly diverse field, presenting recentdevelopments and the latest research with particular emphasis onmetal-based drugs and metal ion toxicity. The text is divided intofour parts: Basic Structural and Kinetic Aspects: includes chapterson sequence-selective metal binding to DNA and thermodynamicmodels. Medical Applications: focuses on anticancer platinumdrugs, including discussions on DNA repair in antitumor effects ofplatinum drugs and photo-dynamic therapy. DNA-Recognition - Nucleases and Sensor: describesprobes for DNA recognition, artificial restriction agents,metallo-DNAzymes for metal sensing applications and metal iondependent catalysis in nucleic acid enzymes. Toxicological Aspects: deals with structural studies ofmercury–DNA interactions, chromium-induced DNA damage andrepair, and the effect of arsenic and nickel on DNAintegrity. This book will be a valuable resource for academic researchersand professionals from a range of pharmaceutical and chemicalindustries, particularly those involved in the development of newand less toxic anticancer metallo-drugs, and in the field ofenvironmental and toxicological chemistry.
Publisher: John Wiley & Sons
ISBN: 9781405194105
Category : Science
Languages : en
Pages : 544
Book Description
Metal ions and metal complexes have long been recognized ascritically important components of nucleic acid chemistry, both inregulation of gene expression and as promising therapeutic agents.Understanding how metal complexes interact with DNA has become anactive research area at the interface between chemistry, molecularbiology and medicine. Metal Complex - DNA Interactions provides a comprehensiveoverview of this increasingly diverse field, presenting recentdevelopments and the latest research with particular emphasis onmetal-based drugs and metal ion toxicity. The text is divided intofour parts: Basic Structural and Kinetic Aspects: includes chapterson sequence-selective metal binding to DNA and thermodynamicmodels. Medical Applications: focuses on anticancer platinumdrugs, including discussions on DNA repair in antitumor effects ofplatinum drugs and photo-dynamic therapy. DNA-Recognition - Nucleases and Sensor: describesprobes for DNA recognition, artificial restriction agents,metallo-DNAzymes for metal sensing applications and metal iondependent catalysis in nucleic acid enzymes. Toxicological Aspects: deals with structural studies ofmercury–DNA interactions, chromium-induced DNA damage andrepair, and the effect of arsenic and nickel on DNAintegrity. This book will be a valuable resource for academic researchersand professionals from a range of pharmaceutical and chemicalindustries, particularly those involved in the development of newand less toxic anticancer metallo-drugs, and in the field ofenvironmental and toxicological chemistry.
Metals in Cells
Author: Valeria Culotta
Publisher: John Wiley & Sons
ISBN: 1118636864
Category : Science
Languages : en
Pages : 608
Book Description
Over the last three decades a lot of research on the role of metals in biochemistry and medicine has been done. As a result many structures of biomolecules with metals have been characterized and medicinal chemistry studied the effects of metal containing drugs. This new book (from the EIBC Book Series) covers recent advances made by top researchers in the field of metals in cells [the “metallome”] and include: regulated metal ion uptake and trafficking, sensing of metals within cells and across tissues, and identification of the vast cellular factors designed to orchestrate assembly of metal cofactor sites while minimizing toxic side reactions of metals. In addition, it features aspects of metals in disease, including the role of metals in neuro-degeneration, liver disease, and inflammation, as a way to highlight the detrimental effects of mishandling of metal trafficking and response to "foreign" metals. With the breadth of our recently acquired understanding of metals in cells, a book that features key aspects of cellular handling of inorganic elements is both timely and important. At this point in our understanding, it is worthwhile to step back and take an expansive view of how far our understanding has come, while also highlighting how much we still do not know. The content from this book will publish online, as part of EIBC in December 2013, find out more about the Encyclopedia of Inorganic and Bioinorganic Chemistry, the essential online resource for researchers and students working in all areas of inorganic and bioinorganic chemistry.
Publisher: John Wiley & Sons
ISBN: 1118636864
Category : Science
Languages : en
Pages : 608
Book Description
Over the last three decades a lot of research on the role of metals in biochemistry and medicine has been done. As a result many structures of biomolecules with metals have been characterized and medicinal chemistry studied the effects of metal containing drugs. This new book (from the EIBC Book Series) covers recent advances made by top researchers in the field of metals in cells [the “metallome”] and include: regulated metal ion uptake and trafficking, sensing of metals within cells and across tissues, and identification of the vast cellular factors designed to orchestrate assembly of metal cofactor sites while minimizing toxic side reactions of metals. In addition, it features aspects of metals in disease, including the role of metals in neuro-degeneration, liver disease, and inflammation, as a way to highlight the detrimental effects of mishandling of metal trafficking and response to "foreign" metals. With the breadth of our recently acquired understanding of metals in cells, a book that features key aspects of cellular handling of inorganic elements is both timely and important. At this point in our understanding, it is worthwhile to step back and take an expansive view of how far our understanding has come, while also highlighting how much we still do not know. The content from this book will publish online, as part of EIBC in December 2013, find out more about the Encyclopedia of Inorganic and Bioinorganic Chemistry, the essential online resource for researchers and students working in all areas of inorganic and bioinorganic chemistry.
Metal Transporters
Author: Jose M. Arguello
Publisher: Academic Press
ISBN: 0123943906
Category : Science
Languages : en
Pages : 478
Book Description
This volume of Current Topics in Membranes focuses on metal transmembrane transporters and pumps, a recently discovered family of membrane proteins with many important roles in the physiology of living organisms. The book summarizes the most recent advances in the field of metal ion transport and provides a broad overview of the major classes of transporters involved in homeostasis of heavy metals. Various families of the transporters and metal specificities are discussed with the focus on the structural and mechanistic aspects of their function and regulation. The reader will access information obtained through a variety of approaches ranging from X-ray crystallography to cell biology and bioinformatics, which have been applied to transporters identified in diverse biological systems, such as pathogenic bacteria, plants, humans and others. Field is cutting-edge and a lot of the information is new to research community Wide breadth of topic coverage Contributors of high renown and expertise
Publisher: Academic Press
ISBN: 0123943906
Category : Science
Languages : en
Pages : 478
Book Description
This volume of Current Topics in Membranes focuses on metal transmembrane transporters and pumps, a recently discovered family of membrane proteins with many important roles in the physiology of living organisms. The book summarizes the most recent advances in the field of metal ion transport and provides a broad overview of the major classes of transporters involved in homeostasis of heavy metals. Various families of the transporters and metal specificities are discussed with the focus on the structural and mechanistic aspects of their function and regulation. The reader will access information obtained through a variety of approaches ranging from X-ray crystallography to cell biology and bioinformatics, which have been applied to transporters identified in diverse biological systems, such as pathogenic bacteria, plants, humans and others. Field is cutting-edge and a lot of the information is new to research community Wide breadth of topic coverage Contributors of high renown and expertise
Zinc Biochemistry, Physiology, and Homeostasis
Author: W. Maret
Publisher: Springer Science & Business Media
ISBN: 9401737282
Category : Science
Languages : en
Pages : 232
Book Description
Chapters in this book review the remarkable advances in the field of zinc biology over the last decade. Zinc is essential for life, in particular for growth and development, through its role in hundreds of zinc enzymes and thousands of zinc proteins. Its catalytic, structural, and regulatory functions in these proteins impact metabolism, gene expression, and signal transduction, including neurotransmission. Among the micronutrients, zinc may rank with iron as to its importance for public health. The topics covered range from single molecules to cells and to whole organisms: the chemistry, design, and application of fluorophores for the determination of cellular zinc; the role of zinc in proliferation, differentiation, and apoptosis of cells; proteins that transport, sense, and distribute zinc and together form a cellular homeostatic system; the coordination chemistry of zinc in metalloproteins; the role of zinc in the brain as a neuromodulator/transmitter; the dependence of the immune system on zinc; zinc homeostasis in the whole human body.
Publisher: Springer Science & Business Media
ISBN: 9401737282
Category : Science
Languages : en
Pages : 232
Book Description
Chapters in this book review the remarkable advances in the field of zinc biology over the last decade. Zinc is essential for life, in particular for growth and development, through its role in hundreds of zinc enzymes and thousands of zinc proteins. Its catalytic, structural, and regulatory functions in these proteins impact metabolism, gene expression, and signal transduction, including neurotransmission. Among the micronutrients, zinc may rank with iron as to its importance for public health. The topics covered range from single molecules to cells and to whole organisms: the chemistry, design, and application of fluorophores for the determination of cellular zinc; the role of zinc in proliferation, differentiation, and apoptosis of cells; proteins that transport, sense, and distribute zinc and together form a cellular homeostatic system; the coordination chemistry of zinc in metalloproteins; the role of zinc in the brain as a neuromodulator/transmitter; the dependence of the immune system on zinc; zinc homeostasis in the whole human body.
Stress and Environmental Regulation of Gene Expression and Adaptation in Bacteria
Author: Frans J. de Bruijn
Publisher: John Wiley & Sons
ISBN: 1119004896
Category : Science
Languages : en
Pages : 1472
Book Description
Bacteria in various habitats are subject to continuously changing environmental conditions, such as nutrient deprivation, heat and cold stress, UV radiation, oxidative stress, dessication, acid stress, nitrosative stress, cell envelope stress, heavy metal exposure, osmotic stress, and others. In order to survive, they have to respond to these conditions by adapting their physiology through sometimes drastic changes in gene expression. In addition they may adapt by changing their morphology, forming biofilms, fruiting bodies or spores, filaments, Viable But Not Culturable (VBNC) cells or moving away from stress compounds via chemotaxis. Changes in gene expression constitute the main component of the bacterial response to stress and environmental changes, and involve a myriad of different mechanisms, including (alternative) sigma factors, bi- or tri-component regulatory systems, small non-coding RNA’s, chaperones, CHRIS-Cas systems, DNA repair, toxin-antitoxin systems, the stringent response, efflux pumps, alarmones, and modulation of the cell envelope or membranes, to name a few. Many regulatory elements are conserved in different bacteria; however there are endless variations on the theme and novel elements of gene regulation in bacteria inhabiting particular environments are constantly being discovered. Especially in (pathogenic) bacteria colonizing the human body a plethora of bacterial responses to innate stresses such as pH, reactive nitrogen and oxygen species and antibiotic stress are being described. An attempt is made to not only cover model systems but give a broad overview of the stress-responsive regulatory systems in a variety of bacteria, including medically important bacteria, where elucidation of certain aspects of these systems could lead to treatment strategies of the pathogens. Many of the regulatory systems being uncovered are specific, but there is also considerable “cross-talk” between different circuits. Stress and Environmental Regulation of Gene Expression and Adaptation in Bacteria is a comprehensive two-volume work bringing together both review and original research articles on key topics in stress and environmental control of gene expression in bacteria. Volume One contains key overview chapters, as well as content on one/two/three component regulatory systems and stress responses, sigma factors and stress responses, small non-coding RNAs and stress responses, toxin-antitoxin systems and stress responses, stringent response to stress, responses to UV irradiation, SOS and double stranded systems repair systems and stress, adaptation to both oxidative and osmotic stress, and desiccation tolerance and drought stress. Volume Two covers heat shock responses, chaperonins and stress, cold shock responses, adaptation to acid stress, nitrosative stress, and envelope stress, as well as iron homeostasis, metal resistance, quorum sensing, chemotaxis and biofilm formation, and viable but not culturable (VBNC) cells. Covering the full breadth of current stress and environmental control of gene expression studies and expanding it towards future advances in the field, these two volumes are a one-stop reference for (non) medical molecular geneticists interested in gene regulation under stress.
Publisher: John Wiley & Sons
ISBN: 1119004896
Category : Science
Languages : en
Pages : 1472
Book Description
Bacteria in various habitats are subject to continuously changing environmental conditions, such as nutrient deprivation, heat and cold stress, UV radiation, oxidative stress, dessication, acid stress, nitrosative stress, cell envelope stress, heavy metal exposure, osmotic stress, and others. In order to survive, they have to respond to these conditions by adapting their physiology through sometimes drastic changes in gene expression. In addition they may adapt by changing their morphology, forming biofilms, fruiting bodies or spores, filaments, Viable But Not Culturable (VBNC) cells or moving away from stress compounds via chemotaxis. Changes in gene expression constitute the main component of the bacterial response to stress and environmental changes, and involve a myriad of different mechanisms, including (alternative) sigma factors, bi- or tri-component regulatory systems, small non-coding RNA’s, chaperones, CHRIS-Cas systems, DNA repair, toxin-antitoxin systems, the stringent response, efflux pumps, alarmones, and modulation of the cell envelope or membranes, to name a few. Many regulatory elements are conserved in different bacteria; however there are endless variations on the theme and novel elements of gene regulation in bacteria inhabiting particular environments are constantly being discovered. Especially in (pathogenic) bacteria colonizing the human body a plethora of bacterial responses to innate stresses such as pH, reactive nitrogen and oxygen species and antibiotic stress are being described. An attempt is made to not only cover model systems but give a broad overview of the stress-responsive regulatory systems in a variety of bacteria, including medically important bacteria, where elucidation of certain aspects of these systems could lead to treatment strategies of the pathogens. Many of the regulatory systems being uncovered are specific, but there is also considerable “cross-talk” between different circuits. Stress and Environmental Regulation of Gene Expression and Adaptation in Bacteria is a comprehensive two-volume work bringing together both review and original research articles on key topics in stress and environmental control of gene expression in bacteria. Volume One contains key overview chapters, as well as content on one/two/three component regulatory systems and stress responses, sigma factors and stress responses, small non-coding RNAs and stress responses, toxin-antitoxin systems and stress responses, stringent response to stress, responses to UV irradiation, SOS and double stranded systems repair systems and stress, adaptation to both oxidative and osmotic stress, and desiccation tolerance and drought stress. Volume Two covers heat shock responses, chaperonins and stress, cold shock responses, adaptation to acid stress, nitrosative stress, and envelope stress, as well as iron homeostasis, metal resistance, quorum sensing, chemotaxis and biofilm formation, and viable but not culturable (VBNC) cells. Covering the full breadth of current stress and environmental control of gene expression studies and expanding it towards future advances in the field, these two volumes are a one-stop reference for (non) medical molecular geneticists interested in gene regulation under stress.
Nucleic Acid-Metal Ion Interactions
Author: Nicholas V Hud
Publisher: Royal Society of Chemistry
ISBN: 1847558763
Category : Science
Languages : en
Pages : 448
Book Description
Natural biochemical processes are routinely being discovered in living cells that involve RNA. Some of these processes, such as RNA interference, are now being exploited for biotechnology and medicinal applications. DNA has also proven in recent years to be more than a passive storehouse of information. For example, non-B-form DNA structures formed by G-rich DNA have been shown to participate in the regulation of gene expression, a discovery that presents new possibilities for drug targets in the genome. The current quest to understand how nucleic acid functions at the most fundamental level requires that we have a detailed understanding of nucleic acid-metal ion interactions. Because RNA and DNA are polyanions the structure and biological function of these biopolymers depends strongly on their association with metal ions. While this intimate connection between metal ions and nucleic function has been appreciated for decades, the noncovalent and dynamic nature of these interactions has continually presented challenges to the development of accurate and quantitative descriptions. Over the past few years the development of solution state spectroscopic techniques and the achievement of high resolution X-ray crystal structures have provided tremendous insights into the nature of nucleic acid-metal ion interactions, including direct evidence for their importance in determining nucleic acid structure, from the dictation of folding pathways followed by large RNA molecules to the subtle modulation of DNA groove widths. This new book provides a comprehensive review of the experimental studies that define our current understanding of nucleic acid-metal ion interactions with a particular emphasis being placed on experimental biophysical studies. However, the book is not merely a current review of the literature, as original material and fresh perspectives on published results are also presented. Particularly noteworthy topics include: -The chapter by Williams and fellow workers which reviews information provided by x-ray crystal structures and discusses what this information has revealed about the unique nature of Mg2+ interactions with RNA phosphate groups. The authors provide fresh insights, based upon structural comparisons, for how these interactions govern the local folding pathways of RNA. By dedicating separate chapters to the participation of metal ions in the kinetics and thermodynamics of RNA folding, this volume provides a more in depth treatise of both areas than is typically possible for reviews in which these two related, but distinct, topics are combined -Polyelectrolyte models of nucleic acids have proven to be extremely valuable for understanding the sequestering counterions in a so-called diffuse cloud around polymeric DNA. J. Michael Schurr provides a comprehensive review of polyanion models. Despite the success of polyelectrolyte models in describing some physical properties of nucleic acids, this topic is not always sufficiently understood by many researchers to make use of these models and this chapter serves as a valuable and up to date introduction to this topic. -The chapter by Pizarro and Sadler on metal ion-nucleic acid interactions in disease and medicine is complemented by a chapter by Lippert on coordinative bond formation between metal ions and nucleic acid bases. Together, these two chapters provide an overview of transition metal ion interactions with nucleic acids that illustrates the promise and peril that is associated with direct metal ion coordination to nucleic acid bases in living cells. The book is sufficiently detailed to serve as a reference source for researchers active in the field of nucleic acids biophysics and molecular biology. In addition, chapter authors have added introductory material and enough background material in each chapter so that the book can also can serve as an entry point for students and researchers that have not previously worked in the field which will make the book of lasting value and more accessible by a wider audience.
Publisher: Royal Society of Chemistry
ISBN: 1847558763
Category : Science
Languages : en
Pages : 448
Book Description
Natural biochemical processes are routinely being discovered in living cells that involve RNA. Some of these processes, such as RNA interference, are now being exploited for biotechnology and medicinal applications. DNA has also proven in recent years to be more than a passive storehouse of information. For example, non-B-form DNA structures formed by G-rich DNA have been shown to participate in the regulation of gene expression, a discovery that presents new possibilities for drug targets in the genome. The current quest to understand how nucleic acid functions at the most fundamental level requires that we have a detailed understanding of nucleic acid-metal ion interactions. Because RNA and DNA are polyanions the structure and biological function of these biopolymers depends strongly on their association with metal ions. While this intimate connection between metal ions and nucleic function has been appreciated for decades, the noncovalent and dynamic nature of these interactions has continually presented challenges to the development of accurate and quantitative descriptions. Over the past few years the development of solution state spectroscopic techniques and the achievement of high resolution X-ray crystal structures have provided tremendous insights into the nature of nucleic acid-metal ion interactions, including direct evidence for their importance in determining nucleic acid structure, from the dictation of folding pathways followed by large RNA molecules to the subtle modulation of DNA groove widths. This new book provides a comprehensive review of the experimental studies that define our current understanding of nucleic acid-metal ion interactions with a particular emphasis being placed on experimental biophysical studies. However, the book is not merely a current review of the literature, as original material and fresh perspectives on published results are also presented. Particularly noteworthy topics include: -The chapter by Williams and fellow workers which reviews information provided by x-ray crystal structures and discusses what this information has revealed about the unique nature of Mg2+ interactions with RNA phosphate groups. The authors provide fresh insights, based upon structural comparisons, for how these interactions govern the local folding pathways of RNA. By dedicating separate chapters to the participation of metal ions in the kinetics and thermodynamics of RNA folding, this volume provides a more in depth treatise of both areas than is typically possible for reviews in which these two related, but distinct, topics are combined -Polyelectrolyte models of nucleic acids have proven to be extremely valuable for understanding the sequestering counterions in a so-called diffuse cloud around polymeric DNA. J. Michael Schurr provides a comprehensive review of polyanion models. Despite the success of polyelectrolyte models in describing some physical properties of nucleic acids, this topic is not always sufficiently understood by many researchers to make use of these models and this chapter serves as a valuable and up to date introduction to this topic. -The chapter by Pizarro and Sadler on metal ion-nucleic acid interactions in disease and medicine is complemented by a chapter by Lippert on coordinative bond formation between metal ions and nucleic acid bases. Together, these two chapters provide an overview of transition metal ion interactions with nucleic acids that illustrates the promise and peril that is associated with direct metal ion coordination to nucleic acid bases in living cells. The book is sufficiently detailed to serve as a reference source for researchers active in the field of nucleic acids biophysics and molecular biology. In addition, chapter authors have added introductory material and enough background material in each chapter so that the book can also can serve as an entry point for students and researchers that have not previously worked in the field which will make the book of lasting value and more accessible by a wider audience.
Metallothionein III
Author: Kazuo T. Suzuki
Publisher: Birkhauser
ISBN:
Category : Medical
Languages : en
Pages : 506
Book Description
Publisher: Birkhauser
ISBN:
Category : Medical
Languages : en
Pages : 506
Book Description
Zinc Finger Proteins
Author: Shiro Iuchi
Publisher: Springer Science & Business Media
ISBN: 0387274219
Category : Science
Languages : en
Pages : 291
Book Description
In the early 1980s, a few scientists started working on a Xenopus transcription factor, TFIIIA. They soon discovered a novel domain associated with zinc, and named this domain "zinc finger. " Th e number of proteins with similar zinc fingers grew quickly and these proteins are now called C2H2, Cys2His2 or classical zinc finger proteins. To date, about 24,000 C2H2 zinc finger proteins have been recognized. Approximately 700 human genes, or more than 2% of the genome, have been estimated to encode C2H2 finger proteins. From the beginning these proteins were thought to be numerous, but no one could have predicted such a huge number. Perhaps thousands of scientists are now working on C2H2 zinc finger proteins fi-om variou s viewpoints. This field is a good example of how a new science begins with the insight of a few scientists and how it develops by efforts of numerous independent scientists, in contrast to a policy-driven scientific project, such as the Human Genome Project, with goals clearly set at its inception and with work performed by a huge collaboration throughout the world. As more zinc finger proteins were discovered, several subfamilies, such as C2C2, CCHC, CCCH, LIM, RING, TAZ, and FYVE emerged, increasing our understanding of zinc fingers. The knowledge was overwhelming. Moreover, scientists began defining the term "zinc finger" differently and using various names for identical zinc fingers. These complications may explain why no single comprehensive resource of zinc finger proteins was available before this publication.
Publisher: Springer Science & Business Media
ISBN: 0387274219
Category : Science
Languages : en
Pages : 291
Book Description
In the early 1980s, a few scientists started working on a Xenopus transcription factor, TFIIIA. They soon discovered a novel domain associated with zinc, and named this domain "zinc finger. " Th e number of proteins with similar zinc fingers grew quickly and these proteins are now called C2H2, Cys2His2 or classical zinc finger proteins. To date, about 24,000 C2H2 zinc finger proteins have been recognized. Approximately 700 human genes, or more than 2% of the genome, have been estimated to encode C2H2 finger proteins. From the beginning these proteins were thought to be numerous, but no one could have predicted such a huge number. Perhaps thousands of scientists are now working on C2H2 zinc finger proteins fi-om variou s viewpoints. This field is a good example of how a new science begins with the insight of a few scientists and how it develops by efforts of numerous independent scientists, in contrast to a policy-driven scientific project, such as the Human Genome Project, with goals clearly set at its inception and with work performed by a huge collaboration throughout the world. As more zinc finger proteins were discovered, several subfamilies, such as C2C2, CCHC, CCCH, LIM, RING, TAZ, and FYVE emerged, increasing our understanding of zinc fingers. The knowledge was overwhelming. Moreover, scientists began defining the term "zinc finger" differently and using various names for identical zinc fingers. These complications may explain why no single comprehensive resource of zinc finger proteins was available before this publication.