Metaheuristic Approaches to Portfolio Optimization PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Metaheuristic Approaches to Portfolio Optimization PDF full book. Access full book title Metaheuristic Approaches to Portfolio Optimization by Ray, Jhuma. Download full books in PDF and EPUB format.

Metaheuristic Approaches to Portfolio Optimization

Metaheuristic Approaches to Portfolio Optimization PDF Author: Ray, Jhuma
Publisher: IGI Global
ISBN: 1522581049
Category : Business & Economics
Languages : en
Pages : 281

Book Description
Control of an impartial balance between risks and returns has become important for investors, and having a combination of financial instruments within a portfolio is an advantage. Portfolio management has thus become very important for reaching a resolution in high-risk investment opportunities and addressing the risk-reward tradeoff by maximizing returns and minimizing risks within a given investment period for a variety of assets. Metaheuristic Approaches to Portfolio Optimization is an essential reference source that examines the proper selection of financial instruments in a financial portfolio management scenario in terms of metaheuristic approaches. It also explores common measures used for the evaluation of risks/returns of portfolios in real-life situations. Featuring research on topics such as closed-end funds, asset allocation, and risk-return paradigm, this book is ideally designed for investors, financial professionals, money managers, accountants, students, professionals, and researchers.

Metaheuristic Approaches to Portfolio Optimization

Metaheuristic Approaches to Portfolio Optimization PDF Author: Ray, Jhuma
Publisher: IGI Global
ISBN: 1522581049
Category : Business & Economics
Languages : en
Pages : 281

Book Description
Control of an impartial balance between risks and returns has become important for investors, and having a combination of financial instruments within a portfolio is an advantage. Portfolio management has thus become very important for reaching a resolution in high-risk investment opportunities and addressing the risk-reward tradeoff by maximizing returns and minimizing risks within a given investment period for a variety of assets. Metaheuristic Approaches to Portfolio Optimization is an essential reference source that examines the proper selection of financial instruments in a financial portfolio management scenario in terms of metaheuristic approaches. It also explores common measures used for the evaluation of risks/returns of portfolios in real-life situations. Featuring research on topics such as closed-end funds, asset allocation, and risk-return paradigm, this book is ideally designed for investors, financial professionals, money managers, accountants, students, professionals, and researchers.

Metaheuristics for Portfolio Optimization

Metaheuristics for Portfolio Optimization PDF Author: G. A. Vijayalakshmi Pai
Publisher: John Wiley & Sons
ISBN: 111948278X
Category : Computers
Languages : en
Pages : 322

Book Description
The book is a monograph in the cross disciplinary area of Computational Intelligence in Finance and elucidates a collection of practical and strategic Portfolio Optimization models in Finance, that employ Metaheuristics for their effective solutions and demonstrates the results using MATLAB implementations, over live portfolios invested across global stock universes. The book has been structured in such a way that, even novices in finance or metaheuristics should be able to comprehend and work on the hybrid models discussed in the book.

Portfolio Management with Heuristic Optimization

Portfolio Management with Heuristic Optimization PDF Author: Dietmar G. Maringer
Publisher: Springer Science & Business Media
ISBN: 0387258531
Category : Business & Economics
Languages : en
Pages : 238

Book Description
Portfolio Management with Heuristic Optimization consist of two parts. The first part (Foundations) deals with the foundations of portfolio optimization, its assumptions, approaches and the limitations when "traditional" optimization techniques are to be applied. In addition, the basic concepts of several heuristic optimization techniques are presented along with examples of how to implement them for financial optimization problems. The second part (Applications and Contributions) consists of five chapters, covering different problems in financial optimization: the effects of (linear, proportional and combined) transaction costs together with integer constraints and limitations on the initital endowment to be invested; the diversification in small portfolios; the effect of cardinality constraints on the Markowitz efficient line; the effects (and hidden risks) of Value-at-Risk when used the relevant risk constraint; the problem factor selection for the Arbitrage Pricing Theory.

Search and Optimization by Metaheuristics

Search and Optimization by Metaheuristics PDF Author: Ke-Lin Du
Publisher: Birkhäuser
ISBN: 3319411926
Category : Computers
Languages : en
Pages : 437

Book Description
This textbook provides a comprehensive introduction to nature-inspired metaheuristic methods for search and optimization, including the latest trends in evolutionary algorithms and other forms of natural computing. Over 100 different types of these methods are discussed in detail. The authors emphasize non-standard optimization problems and utilize a natural approach to the topic, moving from basic notions to more complex ones. An introductory chapter covers the necessary biological and mathematical backgrounds for understanding the main material. Subsequent chapters then explore almost all of the major metaheuristics for search and optimization created based on natural phenomena, including simulated annealing, recurrent neural networks, genetic algorithms and genetic programming, differential evolution, memetic algorithms, particle swarm optimization, artificial immune systems, ant colony optimization, tabu search and scatter search, bee and bacteria foraging algorithms, harmony search, biomolecular computing, quantum computing, and many others. General topics on dynamic, multimodal, constrained, and multiobjective optimizations are also described. Each chapter includes detailed flowcharts that illustrate specific algorithms and exercises that reinforce important topics. Introduced in the appendix are some benchmarks for the evaluation of metaheuristics. Search and Optimization by Metaheuristics is intended primarily as a textbook for graduate and advanced undergraduate students specializing in engineering and computer science. It will also serve as a valuable resource for scientists and researchers working in these areas, as well as those who are interested in search and optimization methods.

Advances in Swarm Intelligence

Advances in Swarm Intelligence PDF Author: Ying Tan
Publisher: Springer Science & Business Media
ISBN: 3642134947
Category : Computers
Languages : en
Pages : 771

Book Description
The LNCS series reports state-of-the-art results in computer science research, development, and education, at a high level and in both printed and electronic form. Enjoying tight cooperation with the R&D community, with numerous individuals, as well as with prestigious organizations and societies, LNCS has grown into the most comprehensive computer science research forum available. The scope of LNCS, including its subseries LNAI and LNBI, spans the whole range of computer science and information technology including interdisciplinary topics in a variety of application fields. The type of material published traditionally includes More recently, several color-cover sublines have been added featuring, beyond a collection of papers, various added-value components; these sublines include In paallel to the printed book, each new volume is published electronically in LNCS Online.

Metaheuristic Optimization: Nature-Inspired Algorithms Swarm and Computational Intelligence, Theory and Applications

Metaheuristic Optimization: Nature-Inspired Algorithms Swarm and Computational Intelligence, Theory and Applications PDF Author: Modestus O. Okwu
Publisher: Springer Nature
ISBN: 3030611116
Category : Technology & Engineering
Languages : en
Pages : 192

Book Description
This book exemplifies how algorithms are developed by mimicking nature. Classical techniques for solving day-to-day problems is time-consuming and cannot address complex problems. Metaheuristic algorithms are nature-inspired optimization techniques for solving real-life complex problems. This book emphasizes the social behaviour of insects, animals and other natural entities, in terms of converging power and benefits. Major nature-inspired algorithms discussed in this book include the bee colony algorithm, ant colony algorithm, grey wolf optimization algorithm, whale optimization algorithm, firefly algorithm, bat algorithm, ant lion optimization algorithm, grasshopper optimization algorithm, butterfly optimization algorithm and others. The algorithms have been arranged in chapters to help readers gain better insight into nature-inspired systems and swarm intelligence. All the MATLAB codes have been provided in the appendices of the book to enable readers practice how to solve examples included in all sections. This book is for experts in Engineering and Applied Sciences, Natural and Formal Sciences, Economics, Humanities and Social Sciences.

Nature-Inspired Methods for Metaheuristics Optimization

Nature-Inspired Methods for Metaheuristics Optimization PDF Author: Fouad Bennis
Publisher: Springer Nature
ISBN: 3030264580
Category : Business & Economics
Languages : en
Pages : 503

Book Description
This book gathers together a set of chapters covering recent development in optimization methods that are inspired by nature. The first group of chapters describes in detail different meta-heuristic algorithms, and shows their applicability using some test or real-world problems. The second part of the book is especially focused on advanced applications and case studies. They span different engineering fields, including mechanical, electrical and civil engineering, and earth/environmental science, and covers topics such as robotics, water management, process optimization, among others. The book covers both basic concepts and advanced issues, offering a timely introduction to nature-inspired optimization method for newcomers and students, and a source of inspiration as well as important practical insights to engineers and researchers.

Research Anthology on Multi-industry Uses of Genetic Programming and Algorithms

Research Anthology on Multi-industry Uses of Genetic Programming and Algorithms PDF Author: Information Resources Management Association
Publisher:
ISBN: 9781799880486
Category : Engineering mathematics
Languages : en
Pages :

Book Description
"This book of research chapters explores the technology, uses, and implementation of genetic programming and algorithms across multiple industries creating a fundamental understanding of this technology, and how genetic programming and algorithms are implemented in fields such as healthcare, engineering, social sciences, computer science and more"--

Metaheuristics for Hard Optimization

Metaheuristics for Hard Optimization PDF Author: Johann Dréo
Publisher: Springer Science & Business Media
ISBN: 3540309667
Category : Mathematics
Languages : en
Pages : 373

Book Description
Contains case studies from engineering and operations research Includes commented literature for each chapter

Handbook of Metaheuristics

Handbook of Metaheuristics PDF Author: Michel Gendreau
Publisher: Springer
ISBN: 3319910868
Category : Business & Economics
Languages : en
Pages : 611

Book Description
The third edition of this handbook is designed to provide a broad coverage of the concepts, implementations, and applications in metaheuristics. The book’s chapters serve as stand-alone presentations giving both the necessary underpinnings as well as practical guides for implementation. The nature of metaheuristics invites an analyst to modify basic methods in response to problem characteristics, past experiences, and personal preferences, and the chapters in this handbook are designed to facilitate this process as well. This new edition has been fully revised and features new chapters on swarm intelligence and automated design of metaheuristics from flexible algorithm frameworks. The authors who have contributed to this volume represent leading figures from the metaheuristic community and are responsible for pioneering contributions to the fields they write about. Their collective work has significantly enriched the field of optimization in general and combinatorial optimization in particular.Metaheuristics are solution methods that orchestrate an interaction between local improvement procedures and higher level strategies to create a process capable of escaping from local optima and performing a robust search of a solution space. In addition, many new and exciting developments and extensions have been observed in the last few years. Hybrids of metaheuristics with other optimization techniques, like branch-and-bound, mathematical programming or constraint programming are also increasingly popular. On the front of applications, metaheuristics are now used to find high-quality solutions to an ever-growing number of complex, ill-defined real-world problems, in particular combinatorial ones. This handbook should continue to be a great reference for researchers, graduate students, as well as practitioners interested in metaheuristics.