Author: Prajna Kunche
Publisher: Springer
ISBN: 3319316834
Category : Technology & Engineering
Languages : en
Pages : 126
Book Description
This book serves as a basic reference for those interested in the application of metaheuristics to speech enhancement. The major goal of the book is to explain the basic concepts of optimization methods and their use in heuristic optimization in speech enhancement to scientists, practicing engineers, and academic researchers in speech processing. The authors discuss why it has been a challenging problem for researchers to develop new enhancement algorithms that aid in the quality and intelligibility of degraded speech. They present powerful optimization methods to speech enhancement that can help to solve the noise reduction problems. Readers will be able to understand the fundamentals of speech processing as well as the optimization techniques, how the speech enhancement algorithms are implemented by utilizing optimization methods, and will be given the tools to develop new algorithms. The authors also provide a comprehensive literature survey regarding the topic.
Metaheuristic Applications to Speech Enhancement
Author: Prajna Kunche
Publisher: Springer
ISBN: 3319316834
Category : Technology & Engineering
Languages : en
Pages : 126
Book Description
This book serves as a basic reference for those interested in the application of metaheuristics to speech enhancement. The major goal of the book is to explain the basic concepts of optimization methods and their use in heuristic optimization in speech enhancement to scientists, practicing engineers, and academic researchers in speech processing. The authors discuss why it has been a challenging problem for researchers to develop new enhancement algorithms that aid in the quality and intelligibility of degraded speech. They present powerful optimization methods to speech enhancement that can help to solve the noise reduction problems. Readers will be able to understand the fundamentals of speech processing as well as the optimization techniques, how the speech enhancement algorithms are implemented by utilizing optimization methods, and will be given the tools to develop new algorithms. The authors also provide a comprehensive literature survey regarding the topic.
Publisher: Springer
ISBN: 3319316834
Category : Technology & Engineering
Languages : en
Pages : 126
Book Description
This book serves as a basic reference for those interested in the application of metaheuristics to speech enhancement. The major goal of the book is to explain the basic concepts of optimization methods and their use in heuristic optimization in speech enhancement to scientists, practicing engineers, and academic researchers in speech processing. The authors discuss why it has been a challenging problem for researchers to develop new enhancement algorithms that aid in the quality and intelligibility of degraded speech. They present powerful optimization methods to speech enhancement that can help to solve the noise reduction problems. Readers will be able to understand the fundamentals of speech processing as well as the optimization techniques, how the speech enhancement algorithms are implemented by utilizing optimization methods, and will be given the tools to develop new algorithms. The authors also provide a comprehensive literature survey regarding the topic.
Metaheuristic and Evolutionary Computation: Algorithms and Applications
Author: Hasmat Malik
Publisher: Springer Nature
ISBN: 9811575711
Category : Technology & Engineering
Languages : en
Pages : 830
Book Description
This book addresses the principles and applications of metaheuristic approaches in engineering and related fields. The first part covers metaheuristics tools and techniques such as ant colony optimization and Tabu search, and their applications to several classes of optimization problems. In turn, the book’s second part focuses on a wide variety of metaheuristics applications in engineering and/or the applied sciences, e.g. in smart grids and renewable energy. In addition, the simulation codes for the problems discussed are included in an appendix for ready reference. Intended for researchers aspiring to learn and apply metaheuristic techniques, and gathering contributions by prominent experts in the field, the book offers readers an essential introduction to metaheuristics, its theoretical aspects and applications.
Publisher: Springer Nature
ISBN: 9811575711
Category : Technology & Engineering
Languages : en
Pages : 830
Book Description
This book addresses the principles and applications of metaheuristic approaches in engineering and related fields. The first part covers metaheuristics tools and techniques such as ant colony optimization and Tabu search, and their applications to several classes of optimization problems. In turn, the book’s second part focuses on a wide variety of metaheuristics applications in engineering and/or the applied sciences, e.g. in smart grids and renewable energy. In addition, the simulation codes for the problems discussed are included in an appendix for ready reference. Intended for researchers aspiring to learn and apply metaheuristic techniques, and gathering contributions by prominent experts in the field, the book offers readers an essential introduction to metaheuristics, its theoretical aspects and applications.
Advances in Metaheuristics
Author: Timothy Ganesan
Publisher: CRC Press
ISBN: 1315297647
Category : Business & Economics
Languages : en
Pages : 234
Book Description
Advances in Metaheuristics: Applications in Engineering Systems provides details on current approaches utilized in engineering optimization. It gives a comprehensive background on metaheuristic applications, focusing on main engineering sectors such as energy, process, and materials. It discusses topics such as algorithmic enhancements and performance measurement approaches, and provides insights into the implementation of metaheuristic strategies to multi-objective optimization problems. With this book, readers can learn to solve real-world engineering optimization problems effectively using the appropriate techniques from emerging fields including evolutionary and swarm intelligence, mathematical programming, and multi-objective optimization. The ten chapters of this book are divided into three parts. The first part discusses three industrial applications in the energy sector. The second focusses on process optimization and considers three engineering applications: optimization of a three-phase separator, process plant, and a pre-treatment process. The third and final part of this book covers industrial applications in material engineering, with a particular focus on sand mould-systems. It also includes discussions on the potential improvement of algorithmic characteristics via strategic algorithmic enhancements. This book helps fill the existing gap in literature on the implementation of metaheuristics in engineering applications and real-world engineering systems. It will be an important resource for engineers and decision-makers selecting and implementing metaheuristics to solve specific engineering problems.
Publisher: CRC Press
ISBN: 1315297647
Category : Business & Economics
Languages : en
Pages : 234
Book Description
Advances in Metaheuristics: Applications in Engineering Systems provides details on current approaches utilized in engineering optimization. It gives a comprehensive background on metaheuristic applications, focusing on main engineering sectors such as energy, process, and materials. It discusses topics such as algorithmic enhancements and performance measurement approaches, and provides insights into the implementation of metaheuristic strategies to multi-objective optimization problems. With this book, readers can learn to solve real-world engineering optimization problems effectively using the appropriate techniques from emerging fields including evolutionary and swarm intelligence, mathematical programming, and multi-objective optimization. The ten chapters of this book are divided into three parts. The first part discusses three industrial applications in the energy sector. The second focusses on process optimization and considers three engineering applications: optimization of a three-phase separator, process plant, and a pre-treatment process. The third and final part of this book covers industrial applications in material engineering, with a particular focus on sand mould-systems. It also includes discussions on the potential improvement of algorithmic characteristics via strategic algorithmic enhancements. This book helps fill the existing gap in literature on the implementation of metaheuristics in engineering applications and real-world engineering systems. It will be an important resource for engineers and decision-makers selecting and implementing metaheuristics to solve specific engineering problems.
Applications of Hybrid Metaheuristic Algorithms for Image Processing
Author: Diego Oliva
Publisher: Springer Nature
ISBN: 3030409775
Category : Technology & Engineering
Languages : en
Pages : 488
Book Description
This book presents a collection of the most recent hybrid methods for image processing. The algorithms included consider evolutionary, swarm, machine learning and deep learning. The respective chapters explore different areas of image processing, from image segmentation to the recognition of objects using complex approaches and medical applications. The book also discusses the theory of the methodologies used to provide an overview of the applications of these tools in image processing. The book is primarily intended for undergraduate and postgraduate students of science, engineering and computational mathematics, and can also be used for courses on artificial intelligence, advanced image processing, and computational intelligence. Further, it is a valuable resource for researchers from the evolutionary computation, artificial intelligence and image processing communities.
Publisher: Springer Nature
ISBN: 3030409775
Category : Technology & Engineering
Languages : en
Pages : 488
Book Description
This book presents a collection of the most recent hybrid methods for image processing. The algorithms included consider evolutionary, swarm, machine learning and deep learning. The respective chapters explore different areas of image processing, from image segmentation to the recognition of objects using complex approaches and medical applications. The book also discusses the theory of the methodologies used to provide an overview of the applications of these tools in image processing. The book is primarily intended for undergraduate and postgraduate students of science, engineering and computational mathematics, and can also be used for courses on artificial intelligence, advanced image processing, and computational intelligence. Further, it is a valuable resource for researchers from the evolutionary computation, artificial intelligence and image processing communities.
New Metaheuristic Schemes: Mechanisms and Applications
Author: Erik Cuevas
Publisher: Springer Nature
ISBN: 3031455614
Category : Technology & Engineering
Languages : en
Pages : 280
Book Description
Recently, novel metaheuristic techniques have emerged in response to the limitations of conventional approaches, leading to enhanced outcomes. These new methods introduce interesting mechanisms and innovative collaborative strategies that facilitate the efficient exploration and exploitation of extensive search spaces characterized by numerous dimensions. The objective of this book is to present advancements that discuss novel alternative metaheuristic developments that have demonstrated their effectiveness in tackling various complex problems. This book encompasses a variety of emerging metaheuristic methods and their practical applications. The content is presented from a teaching perspective, making it particularly suitable for undergraduate and postgraduate students in fields such as science, electrical engineering, and computational mathematics. The book aligns well with courses in artificial intelligence, electrical engineering, and evolutionary computation. Furthermore, the material offers valuable insights to researchers within the metaheuristic and engineering communities. Similarly, engineering practitioners unfamiliar with metaheuristic computation concepts will recognize the pragmatic value of the discussed techniques. These methods transcend mere theoretical tools that have been adapted to effectively address the significant real-world problems commonly encountered in engineering domains.
Publisher: Springer Nature
ISBN: 3031455614
Category : Technology & Engineering
Languages : en
Pages : 280
Book Description
Recently, novel metaheuristic techniques have emerged in response to the limitations of conventional approaches, leading to enhanced outcomes. These new methods introduce interesting mechanisms and innovative collaborative strategies that facilitate the efficient exploration and exploitation of extensive search spaces characterized by numerous dimensions. The objective of this book is to present advancements that discuss novel alternative metaheuristic developments that have demonstrated their effectiveness in tackling various complex problems. This book encompasses a variety of emerging metaheuristic methods and their practical applications. The content is presented from a teaching perspective, making it particularly suitable for undergraduate and postgraduate students in fields such as science, electrical engineering, and computational mathematics. The book aligns well with courses in artificial intelligence, electrical engineering, and evolutionary computation. Furthermore, the material offers valuable insights to researchers within the metaheuristic and engineering communities. Similarly, engineering practitioners unfamiliar with metaheuristic computation concepts will recognize the pragmatic value of the discussed techniques. These methods transcend mere theoretical tools that have been adapted to effectively address the significant real-world problems commonly encountered in engineering domains.
Meta Heuristic Techniques in Software Engineering and Its Applications
Author: Mihir Narayan Mohanty
Publisher: Springer Nature
ISBN: 3031117131
Category : Technology & Engineering
Languages : en
Pages : 368
Book Description
This book discusses an integration of machine learning with metaheuristic techniques that provide more robust and efficient ways to address traditional optimization problems. Modern metaheuristic techniques, along with their main characteristics and recent applications in artificial intelligence, software engineering, data mining, planning and scheduling, logistics and supply chains, are discussed in this book and help global leaders in fast decision making by providing quality solutions to important problems in business, engineering, economics and science. Novel ways are also discovered to attack unsolved problems in software testing and machine learning. The discussion on foundations of optimization and algorithms leads beginners to apply current approaches to optimization problems. The discussed metaheuristic algorithms include genetic algorithms, simulated annealing, ant algorithms, bee algorithms and particle swarm optimization. New developments on metaheuristics attract researchers and practitioners to apply hybrid metaheuristics in real scenarios.
Publisher: Springer Nature
ISBN: 3031117131
Category : Technology & Engineering
Languages : en
Pages : 368
Book Description
This book discusses an integration of machine learning with metaheuristic techniques that provide more robust and efficient ways to address traditional optimization problems. Modern metaheuristic techniques, along with their main characteristics and recent applications in artificial intelligence, software engineering, data mining, planning and scheduling, logistics and supply chains, are discussed in this book and help global leaders in fast decision making by providing quality solutions to important problems in business, engineering, economics and science. Novel ways are also discovered to attack unsolved problems in software testing and machine learning. The discussion on foundations of optimization and algorithms leads beginners to apply current approaches to optimization problems. The discussed metaheuristic algorithms include genetic algorithms, simulated annealing, ant algorithms, bee algorithms and particle swarm optimization. New developments on metaheuristics attract researchers and practitioners to apply hybrid metaheuristics in real scenarios.
Applications of Bat Algorithm and its Variants
Author: Nilanjan Dey
Publisher: Springer Nature
ISBN: 9811550972
Category : Technology & Engineering
Languages : en
Pages : 182
Book Description
This book highlights essential concepts in connection with the traditional bat algorithm and its recent variants, as well as its application to find optimal solutions for a variety of real-world engineering and medical problems. Today, swarm intelligence-based meta-heuristic algorithms are extensively being used to address a wide range of real-world optimization problems due to their adaptability and robustness. Developed in 2009, the bat algorithm (BA) is one of the most successful swarm intelligence procedures, and has been used to tackle optimization tasks for more than a decade. The BA’s mathematical model is quite straightforward and easy to understand and enhance, compared to other swarm approaches. Hence, it has attracted the attention of researchers who are working to find optimal solutions in a diverse range of domains, such as N-dimensional numerical optimization, constrained/unconstrained optimization and linear/nonlinear optimization problems. Along with the traditional BA, its enhanced versions are now also being used to solve optimization problems in science, engineering and medical applications around the globe.
Publisher: Springer Nature
ISBN: 9811550972
Category : Technology & Engineering
Languages : en
Pages : 182
Book Description
This book highlights essential concepts in connection with the traditional bat algorithm and its recent variants, as well as its application to find optimal solutions for a variety of real-world engineering and medical problems. Today, swarm intelligence-based meta-heuristic algorithms are extensively being used to address a wide range of real-world optimization problems due to their adaptability and robustness. Developed in 2009, the bat algorithm (BA) is one of the most successful swarm intelligence procedures, and has been used to tackle optimization tasks for more than a decade. The BA’s mathematical model is quite straightforward and easy to understand and enhance, compared to other swarm approaches. Hence, it has attracted the attention of researchers who are working to find optimal solutions in a diverse range of domains, such as N-dimensional numerical optimization, constrained/unconstrained optimization and linear/nonlinear optimization problems. Along with the traditional BA, its enhanced versions are now also being used to solve optimization problems in science, engineering and medical applications around the globe.
Metaheuristic Algorithms
Author: Gai-Ge Wang
Publisher: CRC Press
ISBN: 1040000363
Category : Computers
Languages : en
Pages : 416
Book Description
This book introduces the theory and applications of metaheuristic algorithms. It also provides methods for solving practical problems in such fields as software engineering, image recognition, video networks, and in the oceans. In the theoretical section, the book introduces the information feedback model, learning-based intelligent optimization, dynamic multi-objective optimization, and multi-model optimization. In the applications section, the book presents applications of optimization algorithms to neural architecture search, fuzz testing, oceans, and image processing. The neural architecture search chapter introduces the latest NAS method. The fuzz testing chapter uses multi-objective optimization and ant colony optimization to solve the seed selection and energy allocation problems in fuzz testing. In the ocean chapter, deep learning methods such as CNN, transformer, and attention-based methods are used to describe ENSO prediction and image processing for marine fish identification, and to provide an overview of traditional classification methods and deep learning methods. Rich in examples, this book will be a great resource for students, scholars, and those interested in metaheuristic algorithms, as well as professional practitioners and researchers working on related topics.
Publisher: CRC Press
ISBN: 1040000363
Category : Computers
Languages : en
Pages : 416
Book Description
This book introduces the theory and applications of metaheuristic algorithms. It also provides methods for solving practical problems in such fields as software engineering, image recognition, video networks, and in the oceans. In the theoretical section, the book introduces the information feedback model, learning-based intelligent optimization, dynamic multi-objective optimization, and multi-model optimization. In the applications section, the book presents applications of optimization algorithms to neural architecture search, fuzz testing, oceans, and image processing. The neural architecture search chapter introduces the latest NAS method. The fuzz testing chapter uses multi-objective optimization and ant colony optimization to solve the seed selection and energy allocation problems in fuzz testing. In the ocean chapter, deep learning methods such as CNN, transformer, and attention-based methods are used to describe ENSO prediction and image processing for marine fish identification, and to provide an overview of traditional classification methods and deep learning methods. Rich in examples, this book will be a great resource for students, scholars, and those interested in metaheuristic algorithms, as well as professional practitioners and researchers working on related topics.
Metaheuristic Algorithms: New Methods, Evaluation, and Performance Analysis
Author: Erik Cuevas
Publisher: Springer Nature
ISBN: 303163053X
Category :
Languages : en
Pages : 309
Book Description
Publisher: Springer Nature
ISBN: 303163053X
Category :
Languages : en
Pages : 309
Book Description
Engineering Optimization
Author: Xin-She Yang
Publisher: John Wiley & Sons
ISBN: 0470640413
Category : Mathematics
Languages : en
Pages : 377
Book Description
An accessible introduction to metaheuristics and optimization, featuring powerful and modern algorithms for application across engineering and the sciences From engineering and computer science to economics and management science, optimization is a core component for problem solving. Highlighting the latest developments that have evolved in recent years, Engineering Optimization: An Introduction with Metaheuristic Applications outlines popular metaheuristic algorithms and equips readers with the skills needed to apply these techniques to their own optimization problems. With insightful examples from various fields of study, the author highlights key concepts and techniques for the successful application of commonly-used metaheuristc algorithms, including simulated annealing, particle swarm optimization, harmony search, and genetic algorithms. The author introduces all major metaheuristic algorithms and their applications in optimization through a presentation that is organized into three succinct parts: Foundations of Optimization and Algorithms provides a brief introduction to the underlying nature of optimization and the common approaches to optimization problems, random number generation, the Monte Carlo method, and the Markov chain Monte Carlo method Metaheuristic Algorithms presents common metaheuristic algorithms in detail, including genetic algorithms, simulated annealing, ant algorithms, bee algorithms, particle swarm optimization, firefly algorithms, and harmony search Applications outlines a wide range of applications that use metaheuristic algorithms to solve challenging optimization problems with detailed implementation while also introducing various modifications used for multi-objective optimization Throughout the book, the author presents worked-out examples and real-world applications that illustrate the modern relevance of the topic. A detailed appendix features important and popular algorithms using MATLAB® and Octave software packages, and a related FTP site houses MATLAB code and programs for easy implementation of the discussed techniques. In addition, references to the current literature enable readers to investigate individual algorithms and methods in greater detail. Engineering Optimization: An Introduction with Metaheuristic Applications is an excellent book for courses on optimization and computer simulation at the upper-undergraduate and graduate levels. It is also a valuable reference for researchers and practitioners working in the fields of mathematics, engineering, computer science, operations research, and management science who use metaheuristic algorithms to solve problems in their everyday work.
Publisher: John Wiley & Sons
ISBN: 0470640413
Category : Mathematics
Languages : en
Pages : 377
Book Description
An accessible introduction to metaheuristics and optimization, featuring powerful and modern algorithms for application across engineering and the sciences From engineering and computer science to economics and management science, optimization is a core component for problem solving. Highlighting the latest developments that have evolved in recent years, Engineering Optimization: An Introduction with Metaheuristic Applications outlines popular metaheuristic algorithms and equips readers with the skills needed to apply these techniques to their own optimization problems. With insightful examples from various fields of study, the author highlights key concepts and techniques for the successful application of commonly-used metaheuristc algorithms, including simulated annealing, particle swarm optimization, harmony search, and genetic algorithms. The author introduces all major metaheuristic algorithms and their applications in optimization through a presentation that is organized into three succinct parts: Foundations of Optimization and Algorithms provides a brief introduction to the underlying nature of optimization and the common approaches to optimization problems, random number generation, the Monte Carlo method, and the Markov chain Monte Carlo method Metaheuristic Algorithms presents common metaheuristic algorithms in detail, including genetic algorithms, simulated annealing, ant algorithms, bee algorithms, particle swarm optimization, firefly algorithms, and harmony search Applications outlines a wide range of applications that use metaheuristic algorithms to solve challenging optimization problems with detailed implementation while also introducing various modifications used for multi-objective optimization Throughout the book, the author presents worked-out examples and real-world applications that illustrate the modern relevance of the topic. A detailed appendix features important and popular algorithms using MATLAB® and Octave software packages, and a related FTP site houses MATLAB code and programs for easy implementation of the discussed techniques. In addition, references to the current literature enable readers to investigate individual algorithms and methods in greater detail. Engineering Optimization: An Introduction with Metaheuristic Applications is an excellent book for courses on optimization and computer simulation at the upper-undergraduate and graduate levels. It is also a valuable reference for researchers and practitioners working in the fields of mathematics, engineering, computer science, operations research, and management science who use metaheuristic algorithms to solve problems in their everyday work.