Author: KAZUYUKI. SHIMIZU
Publisher: CRC Press
ISBN: 9780367782191
Category :
Languages : en
Pages : 325
Book Description
The global warming problem is becoming critical year by year, causing climate disaster all over the world, where it has been believed that the CO2 gas emitted from the factories and the burning of fossil fuels may be one of the reasons of global warming. Moreover, the global stock of fossil fuels is limited, and may run out soon within several tens of years. Although wind, geo-thermal, and tide energies have been considered as clean energy sources, those depend on the land or sea locations and subject to the climate change. Biofuel and biochemical production from renewable bio-resources has thus been paid recent attention from environmental protection and energy production points of view, where the current chemical and energy producing plants can be also utilized with slight modification. The so-called 1st generation biofuels have been produced from corn starch and sugarcane in particular in USA and Brazil. However, this causes the problem of the so-called "food and energy issues" as the production scale increases. The 2nd generation biofuel production from lingo-cellulosic biomass or wastes has thus been paid recent attention. However, it requires energy intensive pretreatment for the degradation of lingo-cellulosic biomass, and the fermentation is slow due to low growth rate, and thus the productivity of biofuels and bio-chemicals is low. The 3rd generation biofuel production from photosynthetic organisms such as cyanobacteria and algae has been also paid attention, because such organisms can grow with only sun light and CO2 in the air, but the cell growth rate and thus the productivity of the fuels is significantly low. The main part or core of such production processes is the fermentation by micro-organisms. In particular, it is critical to properly understand the cell metabolism followed by the efficient metabolic engineering. The book gives comprehensive explanation of the cell metabolism and the metabolic regulation mechanisms of a variety of micro-organisms. Then the efficient metabolic engineering approaches are explained to properly design the microbial cell factories for the efficient cell growth and biofuel and biochemical production.
Metabolic Regulation and Metabolic Engineering for Biofuel and Biochemical Production
Author: KAZUYUKI. SHIMIZU
Publisher: CRC Press
ISBN: 9780367782191
Category :
Languages : en
Pages : 325
Book Description
The global warming problem is becoming critical year by year, causing climate disaster all over the world, where it has been believed that the CO2 gas emitted from the factories and the burning of fossil fuels may be one of the reasons of global warming. Moreover, the global stock of fossil fuels is limited, and may run out soon within several tens of years. Although wind, geo-thermal, and tide energies have been considered as clean energy sources, those depend on the land or sea locations and subject to the climate change. Biofuel and biochemical production from renewable bio-resources has thus been paid recent attention from environmental protection and energy production points of view, where the current chemical and energy producing plants can be also utilized with slight modification. The so-called 1st generation biofuels have been produced from corn starch and sugarcane in particular in USA and Brazil. However, this causes the problem of the so-called "food and energy issues" as the production scale increases. The 2nd generation biofuel production from lingo-cellulosic biomass or wastes has thus been paid recent attention. However, it requires energy intensive pretreatment for the degradation of lingo-cellulosic biomass, and the fermentation is slow due to low growth rate, and thus the productivity of biofuels and bio-chemicals is low. The 3rd generation biofuel production from photosynthetic organisms such as cyanobacteria and algae has been also paid attention, because such organisms can grow with only sun light and CO2 in the air, but the cell growth rate and thus the productivity of the fuels is significantly low. The main part or core of such production processes is the fermentation by micro-organisms. In particular, it is critical to properly understand the cell metabolism followed by the efficient metabolic engineering. The book gives comprehensive explanation of the cell metabolism and the metabolic regulation mechanisms of a variety of micro-organisms. Then the efficient metabolic engineering approaches are explained to properly design the microbial cell factories for the efficient cell growth and biofuel and biochemical production.
Publisher: CRC Press
ISBN: 9780367782191
Category :
Languages : en
Pages : 325
Book Description
The global warming problem is becoming critical year by year, causing climate disaster all over the world, where it has been believed that the CO2 gas emitted from the factories and the burning of fossil fuels may be one of the reasons of global warming. Moreover, the global stock of fossil fuels is limited, and may run out soon within several tens of years. Although wind, geo-thermal, and tide energies have been considered as clean energy sources, those depend on the land or sea locations and subject to the climate change. Biofuel and biochemical production from renewable bio-resources has thus been paid recent attention from environmental protection and energy production points of view, where the current chemical and energy producing plants can be also utilized with slight modification. The so-called 1st generation biofuels have been produced from corn starch and sugarcane in particular in USA and Brazil. However, this causes the problem of the so-called "food and energy issues" as the production scale increases. The 2nd generation biofuel production from lingo-cellulosic biomass or wastes has thus been paid recent attention. However, it requires energy intensive pretreatment for the degradation of lingo-cellulosic biomass, and the fermentation is slow due to low growth rate, and thus the productivity of biofuels and bio-chemicals is low. The 3rd generation biofuel production from photosynthetic organisms such as cyanobacteria and algae has been also paid attention, because such organisms can grow with only sun light and CO2 in the air, but the cell growth rate and thus the productivity of the fuels is significantly low. The main part or core of such production processes is the fermentation by micro-organisms. In particular, it is critical to properly understand the cell metabolism followed by the efficient metabolic engineering. The book gives comprehensive explanation of the cell metabolism and the metabolic regulation mechanisms of a variety of micro-organisms. Then the efficient metabolic engineering approaches are explained to properly design the microbial cell factories for the efficient cell growth and biofuel and biochemical production.
Metabolic Regulation and Metabolic Engineering for Biofuel and Biochemical Production
Author: Kazuyuki Shimizu
Publisher: CRC Press
ISBN: 1351650106
Category : Science
Languages : en
Pages : 377
Book Description
The global warming problem is becoming critical year by year, causing climate disaster all over the world, where it has been believed that the CO2 gas emitted from the factories and the burning of fossil fuels may be one of the reasons of global warming. Moreover, the global stock of fossil fuels is limited, and may run out soon within several tens of years. Although wind, geo-thermal, and tide energies have been considered as clean energy sources, those depend on the land or sea locations and subject to the climate change. Biofuel and biochemical production from renewable bio-resources has thus been paid recent attention from environmental protection and energy production points of view, where the current chemical and energy producing plants can be also utilized with slight modification. The so-called 1st generation biofuels have been produced from corn starch and sugarcane in particular in USA and Brazil. However, this causes the problem of the so-called "food and energy issues" as the production scale increases. The 2nd generation biofuel production from lingo-cellulosic biomass or wastes has thus been paid recent attention. However, it requires energy intensive pretreatment for the degradation of lingo-cellulosic biomass, and the fermentation is slow due to low growth rate, and thus the productivity of biofuels and bio-chemicals is low. The 3rd generation biofuel production from photosynthetic organisms such as cyanobacteria and algae has been also paid attention, because such organisms can grow with only sun light and CO2 in the air, but the cell growth rate and thus the productivity of the fuels is significantly low. The main part or core of such production processes is the fermentation by micro-organisms. In particular, it is critical to properly understand the cell metabolism followed by the efficient metabolic engineering. The book gives comprehensive explanation of the cell metabolism and the metabolic regulation mechanisms of a variety of micro-organisms. Then the efficient metabolic engineering approaches are explained to properly design the microbial cell factories for the efficient cell growth and biofuel and biochemical production.
Publisher: CRC Press
ISBN: 1351650106
Category : Science
Languages : en
Pages : 377
Book Description
The global warming problem is becoming critical year by year, causing climate disaster all over the world, where it has been believed that the CO2 gas emitted from the factories and the burning of fossil fuels may be one of the reasons of global warming. Moreover, the global stock of fossil fuels is limited, and may run out soon within several tens of years. Although wind, geo-thermal, and tide energies have been considered as clean energy sources, those depend on the land or sea locations and subject to the climate change. Biofuel and biochemical production from renewable bio-resources has thus been paid recent attention from environmental protection and energy production points of view, where the current chemical and energy producing plants can be also utilized with slight modification. The so-called 1st generation biofuels have been produced from corn starch and sugarcane in particular in USA and Brazil. However, this causes the problem of the so-called "food and energy issues" as the production scale increases. The 2nd generation biofuel production from lingo-cellulosic biomass or wastes has thus been paid recent attention. However, it requires energy intensive pretreatment for the degradation of lingo-cellulosic biomass, and the fermentation is slow due to low growth rate, and thus the productivity of biofuels and bio-chemicals is low. The 3rd generation biofuel production from photosynthetic organisms such as cyanobacteria and algae has been also paid attention, because such organisms can grow with only sun light and CO2 in the air, but the cell growth rate and thus the productivity of the fuels is significantly low. The main part or core of such production processes is the fermentation by micro-organisms. In particular, it is critical to properly understand the cell metabolism followed by the efficient metabolic engineering. The book gives comprehensive explanation of the cell metabolism and the metabolic regulation mechanisms of a variety of micro-organisms. Then the efficient metabolic engineering approaches are explained to properly design the microbial cell factories for the efficient cell growth and biofuel and biochemical production.
Metabolic Regulation and Metabolic Engineering for Biofuel and Biochemical Production
Author: Kazuyuki Shimizu
Publisher: CRC Press
ISBN: 1498768385
Category : Science
Languages : en
Pages : 408
Book Description
The global warming problem is becoming critical year by year, causing climate disaster all over the world, where it has been believed that the CO2 gas emitted from the factories and the burning of fossil fuels may be one of the reasons of global warming. Moreover, the global stock of fossil fuels is limited, and may run out soon within several tens of years. Although wind, geo-thermal, and tide energies have been considered as clean energy sources, those depend on the land or sea locations and subject to the climate change. Biofuel and biochemical production from renewable bio-resources has thus been paid recent attention from environmental protection and energy production points of view, where the current chemical and energy producing plants can be also utilized with slight modification. The so-called 1st generation biofuels have been produced from corn starch and sugarcane in particular in USA and Brazil. However, this causes the problem of the so-called "food and energy issues" as the production scale increases. The 2nd generation biofuel production from lingo-cellulosic biomass or wastes has thus been paid recent attention. However, it requires energy intensive pretreatment for the degradation of lingo-cellulosic biomass, and the fermentation is slow due to low growth rate, and thus the productivity of biofuels and bio-chemicals is low. The 3rd generation biofuel production from photosynthetic organisms such as cyanobacteria and algae has been also paid attention, because such organisms can grow with only sun light and CO2 in the air, but the cell growth rate and thus the productivity of the fuels is significantly low. The main part or core of such production processes is the fermentation by micro-organisms. In particular, it is critical to properly understand the cell metabolism followed by the efficient metabolic engineering. The book gives comprehensive explanation of the cell metabolism and the metabolic regulation mechanisms of a variety of micro-organisms. Then the efficient metabolic engineering approaches are explained to properly design the microbial cell factories for the efficient cell growth and biofuel and biochemical production.
Publisher: CRC Press
ISBN: 1498768385
Category : Science
Languages : en
Pages : 408
Book Description
The global warming problem is becoming critical year by year, causing climate disaster all over the world, where it has been believed that the CO2 gas emitted from the factories and the burning of fossil fuels may be one of the reasons of global warming. Moreover, the global stock of fossil fuels is limited, and may run out soon within several tens of years. Although wind, geo-thermal, and tide energies have been considered as clean energy sources, those depend on the land or sea locations and subject to the climate change. Biofuel and biochemical production from renewable bio-resources has thus been paid recent attention from environmental protection and energy production points of view, where the current chemical and energy producing plants can be also utilized with slight modification. The so-called 1st generation biofuels have been produced from corn starch and sugarcane in particular in USA and Brazil. However, this causes the problem of the so-called "food and energy issues" as the production scale increases. The 2nd generation biofuel production from lingo-cellulosic biomass or wastes has thus been paid recent attention. However, it requires energy intensive pretreatment for the degradation of lingo-cellulosic biomass, and the fermentation is slow due to low growth rate, and thus the productivity of biofuels and bio-chemicals is low. The 3rd generation biofuel production from photosynthetic organisms such as cyanobacteria and algae has been also paid attention, because such organisms can grow with only sun light and CO2 in the air, but the cell growth rate and thus the productivity of the fuels is significantly low. The main part or core of such production processes is the fermentation by micro-organisms. In particular, it is critical to properly understand the cell metabolism followed by the efficient metabolic engineering. The book gives comprehensive explanation of the cell metabolism and the metabolic regulation mechanisms of a variety of micro-organisms. Then the efficient metabolic engineering approaches are explained to properly design the microbial cell factories for the efficient cell growth and biofuel and biochemical production.
Biotechnology for Biofuel Production and Optimization
Author: Carrie A Eckert
Publisher: Elsevier
ISBN: 0081000537
Category : Science
Languages : en
Pages : 574
Book Description
Biotechnology for Biofuel Production and Optimization is the compilation of current research findings that cover the entire process of biofuels production from manipulation of genes and pathways to organisms and renewable feedstocks for efficient biofuel production as well as different cultivation techniques and process scale-up considerations. This book captures recent breakthroughs in the interdisciplinary areas of systems and synthetic biology, metabolic engineering, and bioprocess engineering for renewable, cleaner sources of energy. - Describes state-of-the-art engineering of metabolic pathways for the production of a variety of fuel molecules - Discusses recent advances in synthetic biology and metabolic engineering for rational design, construction, evaluation of novel pathways and cell chassis - Covers genome engineering technologies to address complex biofuel-tolerant phenotypes for enhanced biofuel production in engineered chassis - Presents the use of novel microorganisms and expanded substrate utilization strategies for production of targeted fuel molecules - Explores biohybrid methods for harvesting bioenergy - Discusses bioreactor design and optimization of scale-up
Publisher: Elsevier
ISBN: 0081000537
Category : Science
Languages : en
Pages : 574
Book Description
Biotechnology for Biofuel Production and Optimization is the compilation of current research findings that cover the entire process of biofuels production from manipulation of genes and pathways to organisms and renewable feedstocks for efficient biofuel production as well as different cultivation techniques and process scale-up considerations. This book captures recent breakthroughs in the interdisciplinary areas of systems and synthetic biology, metabolic engineering, and bioprocess engineering for renewable, cleaner sources of energy. - Describes state-of-the-art engineering of metabolic pathways for the production of a variety of fuel molecules - Discusses recent advances in synthetic biology and metabolic engineering for rational design, construction, evaluation of novel pathways and cell chassis - Covers genome engineering technologies to address complex biofuel-tolerant phenotypes for enhanced biofuel production in engineered chassis - Presents the use of novel microorganisms and expanded substrate utilization strategies for production of targeted fuel molecules - Explores biohybrid methods for harvesting bioenergy - Discusses bioreactor design and optimization of scale-up
Systems Metabolic Engineering
Author: Christoph Wittmann
Publisher: Springer Science & Business Media
ISBN: 9400745346
Category : Medical
Languages : en
Pages : 391
Book Description
Systems Metabolic Engineering is changing the way microbial cell factories are designed and optimized for industrial production. Integrating systems biology and biotechnology with new concepts from synthetic biology enables the global analysis and engineering of microorganisms and bioprocesses at super efficiency and versatility otherwise not accessible. Without doubt, systems metabolic engineering is a major driver towards bio-based production of chemicals, materials and fuels from renewables and thus one of the core technologies of global green growth. In this book, Christoph Wittmann and Sang-Yup Lee have assembled the world leaders on systems metabolic engineering and cover the full story – from genomes and networks via discovery and design to industrial implementation practises. This book is a comprehensive resource for students and researchers from academia and industry interested in systems metabolic engineering. It provides us with the fundaments to targeted engineering of microbial cells for sustainable bio-production and stimulates those who are interested to enter this exiting research field.
Publisher: Springer Science & Business Media
ISBN: 9400745346
Category : Medical
Languages : en
Pages : 391
Book Description
Systems Metabolic Engineering is changing the way microbial cell factories are designed and optimized for industrial production. Integrating systems biology and biotechnology with new concepts from synthetic biology enables the global analysis and engineering of microorganisms and bioprocesses at super efficiency and versatility otherwise not accessible. Without doubt, systems metabolic engineering is a major driver towards bio-based production of chemicals, materials and fuels from renewables and thus one of the core technologies of global green growth. In this book, Christoph Wittmann and Sang-Yup Lee have assembled the world leaders on systems metabolic engineering and cover the full story – from genomes and networks via discovery and design to industrial implementation practises. This book is a comprehensive resource for students and researchers from academia and industry interested in systems metabolic engineering. It provides us with the fundaments to targeted engineering of microbial cells for sustainable bio-production and stimulates those who are interested to enter this exiting research field.
Yeast Metabolic Engineering
Author: Valeria Mapelli
Publisher: Humana Press
ISBN: 9781493905621
Category : Science
Languages : en
Pages : 0
Book Description
Yeast Metabolic Engineering: Methods and Protocols provides the widely established basic tools used in yeast metabolic engineering, while describing in deeper detail novel and innovative methods that have valuable potential to improve metabolic engineering strategies in industrial biotechnology applications. Beginning with an extensive section on molecular tools and technology for yeast engineering, this detailed volume is not limited to methods for Saccharomyces cerevisiae, but describes tools and protocols for engineering other yeasts of biotechnological interest, such as Pichia pastoris, Hansenula polymorpha and Zygosaccharomyces bailii. Tools and technologies for the investigation and determination of yeast metabolic features are described in detail as well as metabolic models and their application for yeast metabolic engineering, while a chapter describing patenting and regulations with a special glance at yeast biotechnology closes the volume. Written in the highly successful Methods in Molecular Biology series format, most chapters include an introduction to their respective topic, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols and tips on troubleshooting and avoiding known pitfalls. Comprehensive and authoritative, Yeast Metabolic Engineering: Methods and Protocols aims to familiarize researchers with the current state of these vital and increasingly useful technologies.
Publisher: Humana Press
ISBN: 9781493905621
Category : Science
Languages : en
Pages : 0
Book Description
Yeast Metabolic Engineering: Methods and Protocols provides the widely established basic tools used in yeast metabolic engineering, while describing in deeper detail novel and innovative methods that have valuable potential to improve metabolic engineering strategies in industrial biotechnology applications. Beginning with an extensive section on molecular tools and technology for yeast engineering, this detailed volume is not limited to methods for Saccharomyces cerevisiae, but describes tools and protocols for engineering other yeasts of biotechnological interest, such as Pichia pastoris, Hansenula polymorpha and Zygosaccharomyces bailii. Tools and technologies for the investigation and determination of yeast metabolic features are described in detail as well as metabolic models and their application for yeast metabolic engineering, while a chapter describing patenting and regulations with a special glance at yeast biotechnology closes the volume. Written in the highly successful Methods in Molecular Biology series format, most chapters include an introduction to their respective topic, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols and tips on troubleshooting and avoiding known pitfalls. Comprehensive and authoritative, Yeast Metabolic Engineering: Methods and Protocols aims to familiarize researchers with the current state of these vital and increasingly useful technologies.
Zero Waste Biorefinery
Author: Yogalakshmi Kadapakkam Nandabalan
Publisher: Springer Nature
ISBN: 9811686823
Category : Science
Languages : en
Pages : 595
Book Description
This book is a compilation of process, technologies and value added products such as high value biochemicals and biofuels produced from different waste biorefineries. The book is sectioned into four categories providing a comprehensive outlook about zero waste biorefinery and technologies associated with it. The emerging technologies that potentially put back the lignocellulosic waste, municipal solid waste and food waste into intrinsic recycling for production of high value biochemicals and bioenergy, along with associated challenges and opportunities are also included. The content also focuses on algal biorefineries leading to sustainable circular economy through production of broad spectrum of bioactive compounds, bioethanol, biobutanol, biohydrogen, biodiesel through integrated biorefinery approach. The volume also includes chapters on conversion technologies and mathematical models applied for process optimization. A sound foundation about the underlying principles of biorefineries and a up-to-date state-of-the-art based overview on the latest advances in terms of scientific knowledge, techno-economic developments and life cycle assessment methodologies of integrated waste biorefinery is provided. This volume will be of great interest to professionals, post-graduate students and policy makers involved in waste management, biorefineries, circular economy and sustainable development.
Publisher: Springer Nature
ISBN: 9811686823
Category : Science
Languages : en
Pages : 595
Book Description
This book is a compilation of process, technologies and value added products such as high value biochemicals and biofuels produced from different waste biorefineries. The book is sectioned into four categories providing a comprehensive outlook about zero waste biorefinery and technologies associated with it. The emerging technologies that potentially put back the lignocellulosic waste, municipal solid waste and food waste into intrinsic recycling for production of high value biochemicals and bioenergy, along with associated challenges and opportunities are also included. The content also focuses on algal biorefineries leading to sustainable circular economy through production of broad spectrum of bioactive compounds, bioethanol, biobutanol, biohydrogen, biodiesel through integrated biorefinery approach. The volume also includes chapters on conversion technologies and mathematical models applied for process optimization. A sound foundation about the underlying principles of biorefineries and a up-to-date state-of-the-art based overview on the latest advances in terms of scientific knowledge, techno-economic developments and life cycle assessment methodologies of integrated waste biorefinery is provided. This volume will be of great interest to professionals, post-graduate students and policy makers involved in waste management, biorefineries, circular economy and sustainable development.
Seaweeds and microalgae
Author: Food and Agriculture Organization of the United Nations
Publisher: Food & Agriculture Org.
ISBN: 9251347107
Category : Technology & Engineering
Languages : en
Pages : 48
Book Description
Algae, including seaweeds and microalgae, contribute nearly 30 percent of world aquaculture production (measured in wet weight), primarily from seaweeds. Seaweeds and cmicroalgae generate socio-economic benefits to tens of thousands of households, primarily in coastal communities, including numerous women empowered by seaweed cultivation. Various human health contributions, environmental benefits and ecosystem services of seaweeds and microalgae have drawn increasing attention to untapped potential of seaweed and microalgae cultivation. Highly imbalanced production and consumption across geographic regions implies a great potential in the development of seaweed and microalgae cultivation. Yet joint efforts of governments, the industry, the scientific community, international organizations, civil societies, and other stakeholders or experts are needed to realize the potential. This document examines the status and trends of global algae production with a focus on algae cultivation, recognizes the algae sector’s existing and potential contributions and benefits, highlights a variety of constraints and challenges over the sector’s sustainable development, and discusses lessons learned and way forward to unlock full potential in algae cultivation and FAO’s roles in the process. From a balanced perspective that recognizes not only the potential of algae but also constraints and challenges upon the realization of the potential, information and knowledge provided by this document can facilitate evidence-based policymaking and sector management in algae development at the global, regional and national levels.
Publisher: Food & Agriculture Org.
ISBN: 9251347107
Category : Technology & Engineering
Languages : en
Pages : 48
Book Description
Algae, including seaweeds and microalgae, contribute nearly 30 percent of world aquaculture production (measured in wet weight), primarily from seaweeds. Seaweeds and cmicroalgae generate socio-economic benefits to tens of thousands of households, primarily in coastal communities, including numerous women empowered by seaweed cultivation. Various human health contributions, environmental benefits and ecosystem services of seaweeds and microalgae have drawn increasing attention to untapped potential of seaweed and microalgae cultivation. Highly imbalanced production and consumption across geographic regions implies a great potential in the development of seaweed and microalgae cultivation. Yet joint efforts of governments, the industry, the scientific community, international organizations, civil societies, and other stakeholders or experts are needed to realize the potential. This document examines the status and trends of global algae production with a focus on algae cultivation, recognizes the algae sector’s existing and potential contributions and benefits, highlights a variety of constraints and challenges over the sector’s sustainable development, and discusses lessons learned and way forward to unlock full potential in algae cultivation and FAO’s roles in the process. From a balanced perspective that recognizes not only the potential of algae but also constraints and challenges upon the realization of the potential, information and knowledge provided by this document can facilitate evidence-based policymaking and sector management in algae development at the global, regional and national levels.
Bioprocessing for Value-Added Products from Renewable Resources
Author: Shang-Tian Yang
Publisher: Elsevier
ISBN: 0080466710
Category : Technology & Engineering
Languages : en
Pages : 685
Book Description
Bioprocessing for Value-Added Products from Renewable Resources provides a timely review of new and unconventional techniques for manufacturing high-value products based on simple biological material. The book discusses the principles underpinning modern industrial biotechnology and describes a unique collection of novel bioprocesses for a sustainable future. This book begins in a very structured way. It first looks at the modern technologies that form the basis for creating a bio-based industry before describing the various organisms that are suitable for bioprocessing - from bacteria to algae - as well as their unique characteristics. This is followed by a discussion of novel, experimental bioprocesses, such as the production of medicinal chemicals, the production of chiral compounds and the design of biofuel cells. The book concludes with examples where biological, renewable resources become an important feedstock for large-scale industrial production. This book is suitable for researchers, practitioners, students, and consultants in the bioprocess and biotechnology fields, and for others who are interested in biotechnology, engineering, industrial microbiology and chemical engineering. ·Reviews the principles underpinning modern industrial biotechnology ·Provides a unique collection of novel bioprocesses for a sustainable future ·Gives examples of economical use of renewable resources as feedstocks ·Suitable for both non-experts and experts in the bioproduct industry
Publisher: Elsevier
ISBN: 0080466710
Category : Technology & Engineering
Languages : en
Pages : 685
Book Description
Bioprocessing for Value-Added Products from Renewable Resources provides a timely review of new and unconventional techniques for manufacturing high-value products based on simple biological material. The book discusses the principles underpinning modern industrial biotechnology and describes a unique collection of novel bioprocesses for a sustainable future. This book begins in a very structured way. It first looks at the modern technologies that form the basis for creating a bio-based industry before describing the various organisms that are suitable for bioprocessing - from bacteria to algae - as well as their unique characteristics. This is followed by a discussion of novel, experimental bioprocesses, such as the production of medicinal chemicals, the production of chiral compounds and the design of biofuel cells. The book concludes with examples where biological, renewable resources become an important feedstock for large-scale industrial production. This book is suitable for researchers, practitioners, students, and consultants in the bioprocess and biotechnology fields, and for others who are interested in biotechnology, engineering, industrial microbiology and chemical engineering. ·Reviews the principles underpinning modern industrial biotechnology ·Provides a unique collection of novel bioprocesses for a sustainable future ·Gives examples of economical use of renewable resources as feedstocks ·Suitable for both non-experts and experts in the bioproduct industry
Industrialization of Biology
Author: National Research Council
Publisher: National Academies Press
ISBN: 0309316553
Category : Science
Languages : en
Pages : 158
Book Description
The tremendous progress in biology over the last half century - from Watson and Crick's elucidation of the structure of DNA to today's astonishing, rapid progress in the field of synthetic biology - has positioned us for significant innovation in chemical production. New bio-based chemicals, improved public health through improved drugs and diagnostics, and biofuels that reduce our dependency on oil are all results of research and innovation in the biological sciences. In the past decade, we have witnessed major advances made possible by biotechnology in areas such as rapid, low-cost DNA sequencing, metabolic engineering, and high-throughput screening. The manufacturing of chemicals using biological synthesis and engineering could expand even faster. A proactive strategy - implemented through the development of a technical roadmap similar to those that enabled sustained growth in the semiconductor industry and our explorations of space - is needed if we are to realize the widespread benefits of accelerating the industrialization of biology. Industrialization of Biology presents such a roadmap to achieve key technical milestones for chemical manufacturing through biological routes. This report examines the technical, economic, and societal factors that limit the adoption of bioprocessing in the chemical industry today and which, if surmounted, would markedly accelerate the advanced manufacturing of chemicals via industrial biotechnology. Working at the interface of synthetic chemistry, metabolic engineering, molecular biology, and synthetic biology, Industrialization of Biology identifies key technical goals for next-generation chemical manufacturing, then identifies the gaps in knowledge, tools, techniques, and systems required to meet those goals, and targets and timelines for achieving them. This report also considers the skills necessary to accomplish the roadmap goals, and what training opportunities are required to produce the cadre of skilled scientists and engineers needed.
Publisher: National Academies Press
ISBN: 0309316553
Category : Science
Languages : en
Pages : 158
Book Description
The tremendous progress in biology over the last half century - from Watson and Crick's elucidation of the structure of DNA to today's astonishing, rapid progress in the field of synthetic biology - has positioned us for significant innovation in chemical production. New bio-based chemicals, improved public health through improved drugs and diagnostics, and biofuels that reduce our dependency on oil are all results of research and innovation in the biological sciences. In the past decade, we have witnessed major advances made possible by biotechnology in areas such as rapid, low-cost DNA sequencing, metabolic engineering, and high-throughput screening. The manufacturing of chemicals using biological synthesis and engineering could expand even faster. A proactive strategy - implemented through the development of a technical roadmap similar to those that enabled sustained growth in the semiconductor industry and our explorations of space - is needed if we are to realize the widespread benefits of accelerating the industrialization of biology. Industrialization of Biology presents such a roadmap to achieve key technical milestones for chemical manufacturing through biological routes. This report examines the technical, economic, and societal factors that limit the adoption of bioprocessing in the chemical industry today and which, if surmounted, would markedly accelerate the advanced manufacturing of chemicals via industrial biotechnology. Working at the interface of synthetic chemistry, metabolic engineering, molecular biology, and synthetic biology, Industrialization of Biology identifies key technical goals for next-generation chemical manufacturing, then identifies the gaps in knowledge, tools, techniques, and systems required to meet those goals, and targets and timelines for achieving them. This report also considers the skills necessary to accomplish the roadmap goals, and what training opportunities are required to produce the cadre of skilled scientists and engineers needed.