Author: Hien Van Nguyen
Publisher: Academic Press
ISBN: 0323998526
Category : Computers
Languages : en
Pages : 430
Book Description
Meta-Learning, or learning to learn, has become increasingly popular in recent years. Instead of building AI systems from scratch for each machine learning task, Meta-Learning constructs computational mechanisms to systematically and efficiently adapt to new tasks. The meta-learning paradigm has great potential to address deep neural networks' fundamental challenges such as intensive data requirement, computationally expensive training, and limited capacity for transfer among tasks.This book provides a concise summary of Meta-Learning theories and their diverse applications in medical imaging and health informatics. It covers the unifying theory of meta-learning and its popular variants such as model-agnostic learning, memory augmentation, prototypical networks, and learning to optimize. The book brings together thought leaders from both machine learning and health informatics fields to discuss the current state of Meta-Learning, its relevance to medical imaging and health informatics, and future directions. - First book on applying Meta Learning to medical imaging - Pioneers in the field as contributing authors to explain the theory and its development - Has GitHub repository consisting of various code examples and documentation to help the audience to set up Meta-Learning algorithms for their applications quickly
Meta Learning With Medical Imaging and Health Informatics Applications
Author: Hien Van Nguyen
Publisher: Academic Press
ISBN: 0323998526
Category : Computers
Languages : en
Pages : 430
Book Description
Meta-Learning, or learning to learn, has become increasingly popular in recent years. Instead of building AI systems from scratch for each machine learning task, Meta-Learning constructs computational mechanisms to systematically and efficiently adapt to new tasks. The meta-learning paradigm has great potential to address deep neural networks' fundamental challenges such as intensive data requirement, computationally expensive training, and limited capacity for transfer among tasks.This book provides a concise summary of Meta-Learning theories and their diverse applications in medical imaging and health informatics. It covers the unifying theory of meta-learning and its popular variants such as model-agnostic learning, memory augmentation, prototypical networks, and learning to optimize. The book brings together thought leaders from both machine learning and health informatics fields to discuss the current state of Meta-Learning, its relevance to medical imaging and health informatics, and future directions. - First book on applying Meta Learning to medical imaging - Pioneers in the field as contributing authors to explain the theory and its development - Has GitHub repository consisting of various code examples and documentation to help the audience to set up Meta-Learning algorithms for their applications quickly
Publisher: Academic Press
ISBN: 0323998526
Category : Computers
Languages : en
Pages : 430
Book Description
Meta-Learning, or learning to learn, has become increasingly popular in recent years. Instead of building AI systems from scratch for each machine learning task, Meta-Learning constructs computational mechanisms to systematically and efficiently adapt to new tasks. The meta-learning paradigm has great potential to address deep neural networks' fundamental challenges such as intensive data requirement, computationally expensive training, and limited capacity for transfer among tasks.This book provides a concise summary of Meta-Learning theories and their diverse applications in medical imaging and health informatics. It covers the unifying theory of meta-learning and its popular variants such as model-agnostic learning, memory augmentation, prototypical networks, and learning to optimize. The book brings together thought leaders from both machine learning and health informatics fields to discuss the current state of Meta-Learning, its relevance to medical imaging and health informatics, and future directions. - First book on applying Meta Learning to medical imaging - Pioneers in the field as contributing authors to explain the theory and its development - Has GitHub repository consisting of various code examples and documentation to help the audience to set up Meta-Learning algorithms for their applications quickly
Meta-Learning Frameworks for Imaging Applications
Author: Sharma, Ashok
Publisher: IGI Global
ISBN: 1668476614
Category : Computers
Languages : en
Pages : 271
Book Description
Meta-learning, or learning to learn, has been gaining popularity in recent years to adapt to new tasks systematically and efficiently in machine learning. In the book, Meta-Learning Frameworks for Imaging Applications, experts from the fields of machine learning and imaging come together to explore the current state of meta-learning and its application to medical imaging and health informatics. The book presents an overview of the meta-learning framework, including common versions such as model-agnostic learning, memory augmentation, prototype networks, and learning to optimize. It also discusses how meta-learning can be applied to address fundamental limitations of deep neural networks, such as high data demand, computationally expensive training, and limited ability for task transfer. One critical topic in imaging is image segmentation, and the book explores how a meta-learning-based framework can help identify the best image segmentation algorithm, which would be particularly beneficial in the healthcare domain. This book is relevant to healthcare institutes, e-commerce companies, and educational institutions, as well as professionals and practitioners in the intelligent system, computational data science, network applications, and biomedical applications fields. It is also useful for domain developers and project managers from diagnostic and pharmacy companies involved in the development of medical expert systems. Additionally, graduate and master students in intelligent systems, big data management, computational intelligent approaches, computer vision, and biomedical science can use this book for their final projects and specific courses.
Publisher: IGI Global
ISBN: 1668476614
Category : Computers
Languages : en
Pages : 271
Book Description
Meta-learning, or learning to learn, has been gaining popularity in recent years to adapt to new tasks systematically and efficiently in machine learning. In the book, Meta-Learning Frameworks for Imaging Applications, experts from the fields of machine learning and imaging come together to explore the current state of meta-learning and its application to medical imaging and health informatics. The book presents an overview of the meta-learning framework, including common versions such as model-agnostic learning, memory augmentation, prototype networks, and learning to optimize. It also discusses how meta-learning can be applied to address fundamental limitations of deep neural networks, such as high data demand, computationally expensive training, and limited ability for task transfer. One critical topic in imaging is image segmentation, and the book explores how a meta-learning-based framework can help identify the best image segmentation algorithm, which would be particularly beneficial in the healthcare domain. This book is relevant to healthcare institutes, e-commerce companies, and educational institutions, as well as professionals and practitioners in the intelligent system, computational data science, network applications, and biomedical applications fields. It is also useful for domain developers and project managers from diagnostic and pharmacy companies involved in the development of medical expert systems. Additionally, graduate and master students in intelligent systems, big data management, computational intelligent approaches, computer vision, and biomedical science can use this book for their final projects and specific courses.
Deep Learning for Medical Image Analysis
Author: S. Kevin Zhou
Publisher: Academic Press
ISBN: 0323858880
Category : Computers
Languages : en
Pages : 544
Book Description
Deep Learning for Medical Image Analysis, Second Edition is a great learning resource for academic and industry researchers and graduate students taking courses on machine learning and deep learning for computer vision and medical image computing and analysis. Deep learning provides exciting solutions for medical image analysis problems and is a key method for future applications. This book gives a clear understanding of the principles and methods of neural network and deep learning concepts, showing how the algorithms that integrate deep learning as a core component are applied to medical image detection, segmentation, registration, and computer-aided analysis.· Covers common research problems in medical image analysis and their challenges · Describes the latest deep learning methods and the theories behind approaches for medical image analysis · Teaches how algorithms are applied to a broad range of application areas including cardiac, neural and functional, colonoscopy, OCTA applications and model assessment · Includes a Foreword written by Nicholas Ayache
Publisher: Academic Press
ISBN: 0323858880
Category : Computers
Languages : en
Pages : 544
Book Description
Deep Learning for Medical Image Analysis, Second Edition is a great learning resource for academic and industry researchers and graduate students taking courses on machine learning and deep learning for computer vision and medical image computing and analysis. Deep learning provides exciting solutions for medical image analysis problems and is a key method for future applications. This book gives a clear understanding of the principles and methods of neural network and deep learning concepts, showing how the algorithms that integrate deep learning as a core component are applied to medical image detection, segmentation, registration, and computer-aided analysis.· Covers common research problems in medical image analysis and their challenges · Describes the latest deep learning methods and the theories behind approaches for medical image analysis · Teaches how algorithms are applied to a broad range of application areas including cardiac, neural and functional, colonoscopy, OCTA applications and model assessment · Includes a Foreword written by Nicholas Ayache
Medical Image Analysis
Author: Alejandro Frangi
Publisher: Academic Press
ISBN: 0128136588
Category : Technology & Engineering
Languages : en
Pages : 700
Book Description
Medical Image Analysis presents practical knowledge on medical image computing and analysis as written by top educators and experts. This text is a modern, practical, self-contained reference that conveys a mix of fundamental methodological concepts within different medical domains. Sections cover core representations and properties of digital images and image enhancement techniques, advanced image computing methods (including segmentation, registration, motion and shape analysis), machine learning, how medical image computing (MIC) is used in clinical and medical research, and how to identify alternative strategies and employ software tools to solve typical problems in MIC. - An authoritative presentation of key concepts and methods from experts in the field - Sections clearly explaining key methodological principles within relevant medical applications - Self-contained chapters enable the text to be used on courses with differing structures - A representative selection of modern topics and techniques in medical image computing - Focus on medical image computing as an enabling technology to tackle unmet clinical needs - Presentation of traditional and machine learning approaches to medical image computing
Publisher: Academic Press
ISBN: 0128136588
Category : Technology & Engineering
Languages : en
Pages : 700
Book Description
Medical Image Analysis presents practical knowledge on medical image computing and analysis as written by top educators and experts. This text is a modern, practical, self-contained reference that conveys a mix of fundamental methodological concepts within different medical domains. Sections cover core representations and properties of digital images and image enhancement techniques, advanced image computing methods (including segmentation, registration, motion and shape analysis), machine learning, how medical image computing (MIC) is used in clinical and medical research, and how to identify alternative strategies and employ software tools to solve typical problems in MIC. - An authoritative presentation of key concepts and methods from experts in the field - Sections clearly explaining key methodological principles within relevant medical applications - Self-contained chapters enable the text to be used on courses with differing structures - A representative selection of modern topics and techniques in medical image computing - Focus on medical image computing as an enabling technology to tackle unmet clinical needs - Presentation of traditional and machine learning approaches to medical image computing
Graphs in Biomedical Image Analysis, and Overlapped Cell on Tissue Dataset for Histopathology
Author: Seyed-Ahmad Ahmadi
Publisher: Springer Nature
ISBN: 3031550889
Category : Diagnostic imaging
Languages : en
Pages : 184
Book Description
This LNCS conference volume constitutes the proceedings of the MICCAI Workshop GRAIL 2023 and MICCAI Challenge OCELOT 2023, Held in Conjunction with MICCAI 2023, Vancouver, BC, Canada, September 23, and October 4, 2023. The 9 full papers (GRAIL 2023) and 6 full papers (OCELOT 2023) included in this volume were carefully reviewed and selected from GRAIL 14 (GRAIL 2023) and 6 (OCELOT 2023) submissions. The conference GRAIL 2023 a wide set of methods and application and OCELOT 2023 focuses on the cover a wide range of methods utilizing tissue information for better cell detection, in the sense of training strategy, model architecture, and especially how to model cell-tissue relationships.
Publisher: Springer Nature
ISBN: 3031550889
Category : Diagnostic imaging
Languages : en
Pages : 184
Book Description
This LNCS conference volume constitutes the proceedings of the MICCAI Workshop GRAIL 2023 and MICCAI Challenge OCELOT 2023, Held in Conjunction with MICCAI 2023, Vancouver, BC, Canada, September 23, and October 4, 2023. The 9 full papers (GRAIL 2023) and 6 full papers (OCELOT 2023) included in this volume were carefully reviewed and selected from GRAIL 14 (GRAIL 2023) and 6 (OCELOT 2023) submissions. The conference GRAIL 2023 a wide set of methods and application and OCELOT 2023 focuses on the cover a wide range of methods utilizing tissue information for better cell detection, in the sense of training strategy, model architecture, and especially how to model cell-tissue relationships.
Micro-Electronics and Telecommunication Engineering
Author: Devendra Kumar Sharma
Publisher: Springer Nature
ISBN: 9819995620
Category : Electronic books
Languages : en
Pages : 813
Book Description
Zusammenfassung: The book presents high-quality papers from the Seventh International Conference on Microelectronics and Telecommunication Engineering (ICMETE 2023). It discusses the latest technological trends and advances in major research areas such as microelectronics, wireless communications, optical communication, signal processing, image processing, Big Data, cloud computing, artificial intelligence, and sensor network applications. This book includes the contributions of national/international scientists, researchers, and engineers from both academia and the industry. The contents of this book will be useful to researchers, professionals, and students alike
Publisher: Springer Nature
ISBN: 9819995620
Category : Electronic books
Languages : en
Pages : 813
Book Description
Zusammenfassung: The book presents high-quality papers from the Seventh International Conference on Microelectronics and Telecommunication Engineering (ICMETE 2023). It discusses the latest technological trends and advances in major research areas such as microelectronics, wireless communications, optical communication, signal processing, image processing, Big Data, cloud computing, artificial intelligence, and sensor network applications. This book includes the contributions of national/international scientists, researchers, and engineers from both academia and the industry. The contents of this book will be useful to researchers, professionals, and students alike
Federated Learning for Digital Healthcare Systems
Author: Agbotiname Lucky Imoize
Publisher: Elsevier
ISBN: 0443138966
Category : Computers
Languages : en
Pages : 459
Book Description
Federated Learning for Digital Healthcare Systems critically examines the key factors that contribute to the problem of applying machine learning in healthcare systems and investigates how federated learning can be employed to address the problem. The book discusses, examines, and compares the applications of federated learning solutions in emerging digital healthcare systems, providing a critical look in terms of the required resources, computational complexity, and system performance. In the first section, chapters examine how to address critical security and privacy concerns and how to revamp existing machine learning models. In subsequent chapters, the book's authors review recent advances to tackle emerging efficient and lightweight algorithms and protocols to reduce computational overheads and communication costs in wireless healthcare systems. Consideration is also given to government and economic regulations as well as legal considerations when federated learning is applied to digital healthcare systems. - Provides insights into real-world scenarios of the design, development, deployment, application, management, and benefits of federated learning in emerging digital healthcare systems - Highlights the need to design efficient federated learning-based algorithms to tackle the proliferating security and patient privacy issues in digital healthcare systems - Reviews the latest research, along with practical solutions and applications developed by global experts from academia and industry
Publisher: Elsevier
ISBN: 0443138966
Category : Computers
Languages : en
Pages : 459
Book Description
Federated Learning for Digital Healthcare Systems critically examines the key factors that contribute to the problem of applying machine learning in healthcare systems and investigates how federated learning can be employed to address the problem. The book discusses, examines, and compares the applications of federated learning solutions in emerging digital healthcare systems, providing a critical look in terms of the required resources, computational complexity, and system performance. In the first section, chapters examine how to address critical security and privacy concerns and how to revamp existing machine learning models. In subsequent chapters, the book's authors review recent advances to tackle emerging efficient and lightweight algorithms and protocols to reduce computational overheads and communication costs in wireless healthcare systems. Consideration is also given to government and economic regulations as well as legal considerations when federated learning is applied to digital healthcare systems. - Provides insights into real-world scenarios of the design, development, deployment, application, management, and benefits of federated learning in emerging digital healthcare systems - Highlights the need to design efficient federated learning-based algorithms to tackle the proliferating security and patient privacy issues in digital healthcare systems - Reviews the latest research, along with practical solutions and applications developed by global experts from academia and industry
Intelligent Data Analytics for Bioinformatics and Biomedical Systems
Author: Neha Sharma
Publisher: John Wiley & Sons
ISBN: 1394270887
Category : Medical
Languages : en
Pages : 437
Book Description
The book analyzes the combination of intelligent data analytics with the intricacies of biological data that has become a crucial factor for innovation and growth in the fast-changing field of bioinformatics and biomedical systems. Intelligent Data Analytics for Bioinformatics and Biomedical Systems delves into the transformative nature of data analytics for bioinformatics and biomedical research. It offers a thorough examination of advanced techniques, methodologies, and applications that utilize intelligence to improve results in the healthcare sector. With the exponential growth of data in these domains, the book explores how computational intelligence and advanced analytic techniques can be harnessed to extract insights, drive informed decisions, and unlock hidden patterns from vast datasets. From genomic analysis to disease diagnostics and personalized medicine, the book aims to showcase intelligent approaches that enable researchers, clinicians, and data scientists to unravel complex biological processes and make significant strides in understanding human health and diseases. This book is divided into three sections, each focusing on computational intelligence and data sets in biomedical systems. The first section discusses the fundamental concepts of computational intelligence and big data in the context of bioinformatics. This section emphasizes data mining, pattern recognition, and knowledge discovery for bioinformatics applications. The second part talks about computational intelligence and big data in biomedical systems. Based on how these advanced techniques are utilized in the system, this section discusses how personalized medicine and precision healthcare enable treatment based on individual data and genetic profiles. The last section investigates the challenges and future directions of computational intelligence and big data in bioinformatics and biomedical systems. This section concludes with discussions on the potential impact of computational intelligence on addressing global healthcare challenges. Audience Intelligent Data Analytics for Bioinformatics and Biomedical Systems is primarily targeted to professionals and researchers in bioinformatics, genetics, molecular biology, biomedical engineering, and healthcare. The book will also suit academicians, students, and professionals working in pharmaceuticals and interpreting biomedical data.
Publisher: John Wiley & Sons
ISBN: 1394270887
Category : Medical
Languages : en
Pages : 437
Book Description
The book analyzes the combination of intelligent data analytics with the intricacies of biological data that has become a crucial factor for innovation and growth in the fast-changing field of bioinformatics and biomedical systems. Intelligent Data Analytics for Bioinformatics and Biomedical Systems delves into the transformative nature of data analytics for bioinformatics and biomedical research. It offers a thorough examination of advanced techniques, methodologies, and applications that utilize intelligence to improve results in the healthcare sector. With the exponential growth of data in these domains, the book explores how computational intelligence and advanced analytic techniques can be harnessed to extract insights, drive informed decisions, and unlock hidden patterns from vast datasets. From genomic analysis to disease diagnostics and personalized medicine, the book aims to showcase intelligent approaches that enable researchers, clinicians, and data scientists to unravel complex biological processes and make significant strides in understanding human health and diseases. This book is divided into three sections, each focusing on computational intelligence and data sets in biomedical systems. The first section discusses the fundamental concepts of computational intelligence and big data in the context of bioinformatics. This section emphasizes data mining, pattern recognition, and knowledge discovery for bioinformatics applications. The second part talks about computational intelligence and big data in biomedical systems. Based on how these advanced techniques are utilized in the system, this section discusses how personalized medicine and precision healthcare enable treatment based on individual data and genetic profiles. The last section investigates the challenges and future directions of computational intelligence and big data in bioinformatics and biomedical systems. This section concludes with discussions on the potential impact of computational intelligence on addressing global healthcare challenges. Audience Intelligent Data Analytics for Bioinformatics and Biomedical Systems is primarily targeted to professionals and researchers in bioinformatics, genetics, molecular biology, biomedical engineering, and healthcare. The book will also suit academicians, students, and professionals working in pharmaceuticals and interpreting biomedical data.
Medical Imaging Informatics
Author: Alex A.T. Bui
Publisher: Springer Science & Business Media
ISBN: 1441903852
Category : Technology & Engineering
Languages : en
Pages : 454
Book Description
Medical Imaging Informatics provides an overview of this growing discipline, which stems from an intersection of biomedical informatics, medical imaging, computer science and medicine. Supporting two complementary views, this volume explores the fundamental technologies and algorithms that comprise this field, as well as the application of medical imaging informatics to subsequently improve healthcare research. Clearly written in a four part structure, this introduction follows natural healthcare processes, illustrating the roles of data collection and standardization, context extraction and modeling, and medical decision making tools and applications. Medical Imaging Informatics identifies core concepts within the field, explores research challenges that drive development, and includes current state-of-the-art methods and strategies.
Publisher: Springer Science & Business Media
ISBN: 1441903852
Category : Technology & Engineering
Languages : en
Pages : 454
Book Description
Medical Imaging Informatics provides an overview of this growing discipline, which stems from an intersection of biomedical informatics, medical imaging, computer science and medicine. Supporting two complementary views, this volume explores the fundamental technologies and algorithms that comprise this field, as well as the application of medical imaging informatics to subsequently improve healthcare research. Clearly written in a four part structure, this introduction follows natural healthcare processes, illustrating the roles of data collection and standardization, context extraction and modeling, and medical decision making tools and applications. Medical Imaging Informatics identifies core concepts within the field, explores research challenges that drive development, and includes current state-of-the-art methods and strategies.
Deep Learning in Medical Image Analysis
Author: Zhengchao Dong
Publisher:
ISBN: 9783036514703
Category :
Languages : en
Pages : 458
Book Description
The accelerating power of deep learning in diagnosing diseases will empower physicians and speed up decision making in clinical environments. Applications of modern medical instruments and digitalization of medical care have generated enormous amounts of medical images in recent years. In this big data arena, new deep learning methods and computational models for efficient data processing, analysis, and modeling of the generated data are crucially important for clinical applications and understanding the underlying biological process. This book presents and highlights novel algorithms, architectures, techniques, and applications of deep learning for medical image analysis.
Publisher:
ISBN: 9783036514703
Category :
Languages : en
Pages : 458
Book Description
The accelerating power of deep learning in diagnosing diseases will empower physicians and speed up decision making in clinical environments. Applications of modern medical instruments and digitalization of medical care have generated enormous amounts of medical images in recent years. In this big data arena, new deep learning methods and computational models for efficient data processing, analysis, and modeling of the generated data are crucially important for clinical applications and understanding the underlying biological process. This book presents and highlights novel algorithms, architectures, techniques, and applications of deep learning for medical image analysis.