Author: Ildar B. Badriev
Publisher: Springer Nature
ISBN: 3030878090
Category : Mathematics
Languages : en
Pages : 607
Book Description
This book gathers papers presented at the 13th International Conference on Mesh Methods for Boundary-Value Problems and Applications, which was held in Kazan, Russia, in October 2020. The papers address the following topics: the theory of mesh methods for boundary-value problems in mathematical physics; non-linear mathematical models in mechanics and physics; algorithms for solving variational inequalities; computing science; and educational systems. Given its scope, the book is chiefly intended for students in the fields of mathematical modeling science and engineering. However, it will also benefit scientists and graduate students interested in these fields.
Mesh Methods for Boundary-Value Problems and Applications
Author: Ildar B. Badriev
Publisher: Springer Nature
ISBN: 3030878090
Category : Mathematics
Languages : en
Pages : 607
Book Description
This book gathers papers presented at the 13th International Conference on Mesh Methods for Boundary-Value Problems and Applications, which was held in Kazan, Russia, in October 2020. The papers address the following topics: the theory of mesh methods for boundary-value problems in mathematical physics; non-linear mathematical models in mechanics and physics; algorithms for solving variational inequalities; computing science; and educational systems. Given its scope, the book is chiefly intended for students in the fields of mathematical modeling science and engineering. However, it will also benefit scientists and graduate students interested in these fields.
Publisher: Springer Nature
ISBN: 3030878090
Category : Mathematics
Languages : en
Pages : 607
Book Description
This book gathers papers presented at the 13th International Conference on Mesh Methods for Boundary-Value Problems and Applications, which was held in Kazan, Russia, in October 2020. The papers address the following topics: the theory of mesh methods for boundary-value problems in mathematical physics; non-linear mathematical models in mechanics and physics; algorithms for solving variational inequalities; computing science; and educational systems. Given its scope, the book is chiefly intended for students in the fields of mathematical modeling science and engineering. However, it will also benefit scientists and graduate students interested in these fields.
Numerical Solution of Boundary Value Problems for Ordinary Differential Equations
Author: Uri M. Ascher
Publisher: SIAM
ISBN: 9781611971231
Category : Mathematics
Languages : en
Pages : 620
Book Description
This book is the most comprehensive, up-to-date account of the popular numerical methods for solving boundary value problems in ordinary differential equations. It aims at a thorough understanding of the field by giving an in-depth analysis of the numerical methods by using decoupling principles. Numerous exercises and real-world examples are used throughout to demonstrate the methods and the theory. Although first published in 1988, this republication remains the most comprehensive theoretical coverage of the subject matter, not available elsewhere in one volume. Many problems, arising in a wide variety of application areas, give rise to mathematical models which form boundary value problems for ordinary differential equations. These problems rarely have a closed form solution, and computer simulation is typically used to obtain their approximate solution. This book discusses methods to carry out such computer simulations in a robust, efficient, and reliable manner.
Publisher: SIAM
ISBN: 9781611971231
Category : Mathematics
Languages : en
Pages : 620
Book Description
This book is the most comprehensive, up-to-date account of the popular numerical methods for solving boundary value problems in ordinary differential equations. It aims at a thorough understanding of the field by giving an in-depth analysis of the numerical methods by using decoupling principles. Numerous exercises and real-world examples are used throughout to demonstrate the methods and the theory. Although first published in 1988, this republication remains the most comprehensive theoretical coverage of the subject matter, not available elsewhere in one volume. Many problems, arising in a wide variety of application areas, give rise to mathematical models which form boundary value problems for ordinary differential equations. These problems rarely have a closed form solution, and computer simulation is typically used to obtain their approximate solution. This book discusses methods to carry out such computer simulations in a robust, efficient, and reliable manner.
Solving Differential Equations by Multistep Initial and Boundary Value Methods
Author: L Brugnano
Publisher: CRC Press
ISBN: 9789056991074
Category : Mathematics
Languages : en
Pages : 438
Book Description
The numerical approximation of solutions of differential equations has been, and continues to be, one of the principal concerns of numerical analysis and is an active area of research. The new generation of parallel computers have provoked a reconsideration of numerical methods. This book aims to generalize classical multistep methods for both initial and boundary value problems; to present a self-contained theory which embraces and generalizes the classical Dahlquist theory; to treat nonclassical problems, such as Hamiltonian problems and the mesh selection; and to select appropriate methods for a general purpose software capable of solving a wide range of problems efficiently, even on parallel computers.
Publisher: CRC Press
ISBN: 9789056991074
Category : Mathematics
Languages : en
Pages : 438
Book Description
The numerical approximation of solutions of differential equations has been, and continues to be, one of the principal concerns of numerical analysis and is an active area of research. The new generation of parallel computers have provoked a reconsideration of numerical methods. This book aims to generalize classical multistep methods for both initial and boundary value problems; to present a self-contained theory which embraces and generalizes the classical Dahlquist theory; to treat nonclassical problems, such as Hamiltonian problems and the mesh selection; and to select appropriate methods for a general purpose software capable of solving a wide range of problems efficiently, even on parallel computers.
Numerical Solutions of Boundary Value Problems for Ordinary Differential Equations
Author: A.K. Aziz
Publisher: Academic Press
ISBN: 1483267997
Category : Mathematics
Languages : en
Pages : 380
Book Description
Numerical Solutions of Boundary Value Problems for Ordinary Differential Equations covers the proceedings of the 1974 Symposium by the same title, held at the University of Maryland, Baltimore Country Campus. This symposium aims to bring together a number of numerical analysis involved in research in both theoretical and practical aspects of this field. This text is organized into three parts encompassing 15 chapters. Part I reviews the initial and boundary value problems. Part II explores a large number of important results of both theoretical and practical nature of the field, including discussions of the smooth and local interpolant with small K-th derivative, the occurrence and solution of boundary value reaction systems, the posteriori error estimates, and boundary problem solvers for first order systems based on deferred corrections. Part III highlights the practical applications of the boundary value problems, specifically a high-order finite-difference method for the solution of two-point boundary-value problems on a uniform mesh. This book will prove useful to mathematicians, engineers, and physicists.
Publisher: Academic Press
ISBN: 1483267997
Category : Mathematics
Languages : en
Pages : 380
Book Description
Numerical Solutions of Boundary Value Problems for Ordinary Differential Equations covers the proceedings of the 1974 Symposium by the same title, held at the University of Maryland, Baltimore Country Campus. This symposium aims to bring together a number of numerical analysis involved in research in both theoretical and practical aspects of this field. This text is organized into three parts encompassing 15 chapters. Part I reviews the initial and boundary value problems. Part II explores a large number of important results of both theoretical and practical nature of the field, including discussions of the smooth and local interpolant with small K-th derivative, the occurrence and solution of boundary value reaction systems, the posteriori error estimates, and boundary problem solvers for first order systems based on deferred corrections. Part III highlights the practical applications of the boundary value problems, specifically a high-order finite-difference method for the solution of two-point boundary-value problems on a uniform mesh. This book will prove useful to mathematicians, engineers, and physicists.
Mesh Methods
Author: Viktor A. Rukavishnikov
Publisher: MDPI
ISBN: 3036503765
Category : Mathematics
Languages : en
Pages : 128
Book Description
Mathematical models of various natural processes are described by differential equations, systems of partial differential equations and integral equations. In most cases, the exact solution to such problems cannot be determined; therefore, one has to use grid methods to calculate an approximate solution using high-performance computing systems. These methods include the finite element method, the finite difference method, the finite volume method and combined methods. In this Special Issue, we bring to your attention works on theoretical studies of grid methods for approximation, stability and convergence, as well as the results of numerical experiments confirming the effectiveness of the developed methods. Of particular interest are new methods for solving boundary value problems with singularities, the complex geometry of the domain boundary and nonlinear equations. A part of the articles is devoted to the analysis of numerical methods developed for calculating mathematical models in various fields of applied science and engineering applications. As a rule, the ideas of symmetry are present in the design schemes and make the process harmonious and efficient.
Publisher: MDPI
ISBN: 3036503765
Category : Mathematics
Languages : en
Pages : 128
Book Description
Mathematical models of various natural processes are described by differential equations, systems of partial differential equations and integral equations. In most cases, the exact solution to such problems cannot be determined; therefore, one has to use grid methods to calculate an approximate solution using high-performance computing systems. These methods include the finite element method, the finite difference method, the finite volume method and combined methods. In this Special Issue, we bring to your attention works on theoretical studies of grid methods for approximation, stability and convergence, as well as the results of numerical experiments confirming the effectiveness of the developed methods. Of particular interest are new methods for solving boundary value problems with singularities, the complex geometry of the domain boundary and nonlinear equations. A part of the articles is devoted to the analysis of numerical methods developed for calculating mathematical models in various fields of applied science and engineering applications. As a rule, the ideas of symmetry are present in the design schemes and make the process harmonious and efficient.
Adaptive Moving Mesh Methods
Author: Weizhang Huang
Publisher: Springer Science & Business Media
ISBN: 1441979166
Category : Mathematics
Languages : en
Pages : 446
Book Description
This book is about adaptive mesh generation and moving mesh methods for the numerical solution of time-dependent partial differential equations. It presents a general framework and theory for adaptive mesh generation and gives a comprehensive treatment of moving mesh methods and their basic components, along with their application for a number of nontrivial physical problems. Many explicit examples with computed figures illustrate the various methods and the effects of parameter choices for those methods. Graduate students, researchers and practitioners working in this area will benefit from this book.
Publisher: Springer Science & Business Media
ISBN: 1441979166
Category : Mathematics
Languages : en
Pages : 446
Book Description
This book is about adaptive mesh generation and moving mesh methods for the numerical solution of time-dependent partial differential equations. It presents a general framework and theory for adaptive mesh generation and gives a comprehensive treatment of moving mesh methods and their basic components, along with their application for a number of nontrivial physical problems. Many explicit examples with computed figures illustrate the various methods and the effects of parameter choices for those methods. Graduate students, researchers and practitioners working in this area will benefit from this book.
Numerical Solution of Nonlinear Boundary Value Problems with Applications
Author: Milan Kubicek
Publisher: Courier Corporation
ISBN: 0486463001
Category : Mathematics
Languages : en
Pages : 338
Book Description
A survey of the development, analysis, and application of numerical techniques in solving nonlinear boundary value problems, this text presents numerical analysis as a working tool for physicists and engineers. Starting with a survey of accomplishments in the field, it explores initial and boundary value problems for ordinary differential equations, linear boundary value problems, and the numerical realization of parametric studies in nonlinear boundary value problems. The authors--Milan Kubicek, Professor at the Prague Institute of Chemical Technology, and Vladimir Hlavacek, Professor at the University of Buffalo--emphasize the description and straightforward application of numerical techniques rather than underlying theory. This approach reflects their extensive experience with the application of diverse numerical algorithms.
Publisher: Courier Corporation
ISBN: 0486463001
Category : Mathematics
Languages : en
Pages : 338
Book Description
A survey of the development, analysis, and application of numerical techniques in solving nonlinear boundary value problems, this text presents numerical analysis as a working tool for physicists and engineers. Starting with a survey of accomplishments in the field, it explores initial and boundary value problems for ordinary differential equations, linear boundary value problems, and the numerical realization of parametric studies in nonlinear boundary value problems. The authors--Milan Kubicek, Professor at the Prague Institute of Chemical Technology, and Vladimir Hlavacek, Professor at the University of Buffalo--emphasize the description and straightforward application of numerical techniques rather than underlying theory. This approach reflects their extensive experience with the application of diverse numerical algorithms.
Finite Element Solution of Boundary Value Problems
Author: O. Axelsson
Publisher: Academic Press
ISBN: 1483260569
Category : Mathematics
Languages : en
Pages : 453
Book Description
Finite Element Solution of Boundary Value Problems: Theory and Computation provides an introduction to both the theoretical and computational aspects of the finite element method for solving boundary value problems for partial differential equations. This book is composed of seven chapters and begins with surveys of the two kinds of preconditioning techniques, one based on the symmetric successive overrelaxation iterative method for solving a system of equations and a form of incomplete factorization. The subsequent chapters deal with the concepts from functional analysis of boundary value problems. These topics are followed by discussions of the Ritz method, which minimizes the quadratic functional associated with a given boundary value problem over some finite-dimensional subspace of the original space of functions. Other chapters are devoted to direct methods, including Gaussian elimination and related methods, for solving a system of linear algebraic equations. The final chapter continues the analysis of preconditioned conjugate gradient methods, concentrating on applications to finite element problems. This chapter also looks into the techniques for reducing rounding errors in the iterative solution of finite element equations. This book will be of value to advanced undergraduates and graduates in the areas of numerical analysis, mathematics, and computer science, as well as for theoretically inclined workers in engineering and the physical sciences.
Publisher: Academic Press
ISBN: 1483260569
Category : Mathematics
Languages : en
Pages : 453
Book Description
Finite Element Solution of Boundary Value Problems: Theory and Computation provides an introduction to both the theoretical and computational aspects of the finite element method for solving boundary value problems for partial differential equations. This book is composed of seven chapters and begins with surveys of the two kinds of preconditioning techniques, one based on the symmetric successive overrelaxation iterative method for solving a system of equations and a form of incomplete factorization. The subsequent chapters deal with the concepts from functional analysis of boundary value problems. These topics are followed by discussions of the Ritz method, which minimizes the quadratic functional associated with a given boundary value problem over some finite-dimensional subspace of the original space of functions. Other chapters are devoted to direct methods, including Gaussian elimination and related methods, for solving a system of linear algebraic equations. The final chapter continues the analysis of preconditioned conjugate gradient methods, concentrating on applications to finite element problems. This chapter also looks into the techniques for reducing rounding errors in the iterative solution of finite element equations. This book will be of value to advanced undergraduates and graduates in the areas of numerical analysis, mathematics, and computer science, as well as for theoretically inclined workers in engineering and the physical sciences.
An Introduction to Meshfree Methods and Their Programming
Author: G.R. Liu
Publisher: Springer Science & Business Media
ISBN: 1402034687
Category : Technology & Engineering
Languages : en
Pages : 497
Book Description
The finite difference method (FDM) hasbeen used tosolve differential equation systems for centuries. The FDM works well for problems of simple geometry and was widely used before the invention of the much more efficient, robust finite element method (FEM). FEM is now widely used in handling problems with complex geometry. Currently, we are using and developing even more powerful numerical techniques aiming to obtain more accurate approximate solutions in a more convenient manner for even more complex systems. The meshfree or meshless method is one such phenomenal development in the past decade, and is the subject of this book. There are many MFree methods proposed so far for different applications. Currently, three monographs on MFree methods have been published. Mesh Free Methods, Moving Beyond the Finite Element Method d by GR Liu (2002) provides a systematic discussion on basic theories, fundamentals for MFree methods, especially on MFree weak-form methods. It provides a comprehensive record of well-known MFree methods and the wide coverage of applications of MFree methods to problems of solids mechanics (solids, beams, plates, shells, etc.) as well as fluid mechanics. The Meshless Local Petrov-Galerkin (MLPG) Method d by Atluri and Shen (2002) provides detailed discussions of the meshfree local Petrov-Galerkin (MLPG) method and itsvariations. Formulations and applications of MLPG are well addressed in their book.
Publisher: Springer Science & Business Media
ISBN: 1402034687
Category : Technology & Engineering
Languages : en
Pages : 497
Book Description
The finite difference method (FDM) hasbeen used tosolve differential equation systems for centuries. The FDM works well for problems of simple geometry and was widely used before the invention of the much more efficient, robust finite element method (FEM). FEM is now widely used in handling problems with complex geometry. Currently, we are using and developing even more powerful numerical techniques aiming to obtain more accurate approximate solutions in a more convenient manner for even more complex systems. The meshfree or meshless method is one such phenomenal development in the past decade, and is the subject of this book. There are many MFree methods proposed so far for different applications. Currently, three monographs on MFree methods have been published. Mesh Free Methods, Moving Beyond the Finite Element Method d by GR Liu (2002) provides a systematic discussion on basic theories, fundamentals for MFree methods, especially on MFree weak-form methods. It provides a comprehensive record of well-known MFree methods and the wide coverage of applications of MFree methods to problems of solids mechanics (solids, beams, plates, shells, etc.) as well as fluid mechanics. The Meshless Local Petrov-Galerkin (MLPG) Method d by Atluri and Shen (2002) provides detailed discussions of the meshfree local Petrov-Galerkin (MLPG) method and itsvariations. Formulations and applications of MLPG are well addressed in their book.
Fitted Numerical Methods For Singular Perturbation Problems: Error Estimates In The Maximum Norm For Linear Problems In One And Two Dimensions (Revised Edition)
Author: John J H Miller
Publisher: World Scientific
ISBN: 9814452777
Category : Mathematics
Languages : en
Pages : 191
Book Description
Since the first edition of this book, the literature on fitted mesh methods for singularly perturbed problems has expanded significantly. Over the intervening years, fitted meshes have been shown to be effective for an extensive set of singularly perturbed partial differential equations. In the revised version of this book, the reader will find an introduction to the basic theory associated with fitted numerical methods for singularly perturbed differential equations. Fitted mesh methods focus on the appropriate distribution of the mesh points for singularly perturbed problems. The global errors in the numerical approximations are measured in the pointwise maximum norm. The fitted mesh algorithm is particularly simple to implement in practice, but the theory of why these numerical methods work is far from simple. This book can be used as an introductory text to the theory underpinning fitted mesh methods.
Publisher: World Scientific
ISBN: 9814452777
Category : Mathematics
Languages : en
Pages : 191
Book Description
Since the first edition of this book, the literature on fitted mesh methods for singularly perturbed problems has expanded significantly. Over the intervening years, fitted meshes have been shown to be effective for an extensive set of singularly perturbed partial differential equations. In the revised version of this book, the reader will find an introduction to the basic theory associated with fitted numerical methods for singularly perturbed differential equations. Fitted mesh methods focus on the appropriate distribution of the mesh points for singularly perturbed problems. The global errors in the numerical approximations are measured in the pointwise maximum norm. The fitted mesh algorithm is particularly simple to implement in practice, but the theory of why these numerical methods work is far from simple. This book can be used as an introductory text to the theory underpinning fitted mesh methods.