Author: B. Bontempi
Publisher: Springer Science & Business Media
ISBN: 354045702X
Category : Medical
Languages : en
Pages : 188
Book Description
This volume surveys the recent advances and provides an integrative view of molecular, cellular, and systems level mechanisms underlying cognitive processes in both animals and humans. Current and future avenues are discussed by distinguished scientists. They provide an overview of the underlying neurobiology of cognitive processes, and focus on clinical and therapeutic aspects surrounding impairments associated with disorders that affect cognition.
Memories: Molecules and Circuits
Author: B. Bontempi
Publisher: Springer Science & Business Media
ISBN: 354045702X
Category : Medical
Languages : en
Pages : 188
Book Description
This volume surveys the recent advances and provides an integrative view of molecular, cellular, and systems level mechanisms underlying cognitive processes in both animals and humans. Current and future avenues are discussed by distinguished scientists. They provide an overview of the underlying neurobiology of cognitive processes, and focus on clinical and therapeutic aspects surrounding impairments associated with disorders that affect cognition.
Publisher: Springer Science & Business Media
ISBN: 354045702X
Category : Medical
Languages : en
Pages : 188
Book Description
This volume surveys the recent advances and provides an integrative view of molecular, cellular, and systems level mechanisms underlying cognitive processes in both animals and humans. Current and future avenues are discussed by distinguished scientists. They provide an overview of the underlying neurobiology of cognitive processes, and focus on clinical and therapeutic aspects surrounding impairments associated with disorders that affect cognition.
Discovering the Brain
Author: National Academy of Sciences
Publisher: National Academies Press
ISBN: 0309045290
Category : Medical
Languages : en
Pages : 195
Book Description
The brain ... There is no other part of the human anatomy that is so intriguing. How does it develop and function and why does it sometimes, tragically, degenerate? The answers are complex. In Discovering the Brain, science writer Sandra Ackerman cuts through the complexity to bring this vital topic to the public. The 1990s were declared the "Decade of the Brain" by former President Bush, and the neuroscience community responded with a host of new investigations and conferences. Discovering the Brain is based on the Institute of Medicine conference, Decade of the Brain: Frontiers in Neuroscience and Brain Research. Discovering the Brain is a "field guide" to the brainâ€"an easy-to-read discussion of the brain's physical structure and where functions such as language and music appreciation lie. Ackerman examines: How electrical and chemical signals are conveyed in the brain. The mechanisms by which we see, hear, think, and pay attentionâ€"and how a "gut feeling" actually originates in the brain. Learning and memory retention, including parallels to computer memory and what they might tell us about our own mental capacity. Development of the brain throughout the life span, with a look at the aging brain. Ackerman provides an enlightening chapter on the connection between the brain's physical condition and various mental disorders and notes what progress can realistically be made toward the prevention and treatment of stroke and other ailments. Finally, she explores the potential for major advances during the "Decade of the Brain," with a look at medical imaging techniquesâ€"what various technologies can and cannot tell usâ€"and how the public and private sectors can contribute to continued advances in neuroscience. This highly readable volume will provide the public and policymakersâ€"and many scientists as wellâ€"with a helpful guide to understanding the many discoveries that are sure to be announced throughout the "Decade of the Brain."
Publisher: National Academies Press
ISBN: 0309045290
Category : Medical
Languages : en
Pages : 195
Book Description
The brain ... There is no other part of the human anatomy that is so intriguing. How does it develop and function and why does it sometimes, tragically, degenerate? The answers are complex. In Discovering the Brain, science writer Sandra Ackerman cuts through the complexity to bring this vital topic to the public. The 1990s were declared the "Decade of the Brain" by former President Bush, and the neuroscience community responded with a host of new investigations and conferences. Discovering the Brain is based on the Institute of Medicine conference, Decade of the Brain: Frontiers in Neuroscience and Brain Research. Discovering the Brain is a "field guide" to the brainâ€"an easy-to-read discussion of the brain's physical structure and where functions such as language and music appreciation lie. Ackerman examines: How electrical and chemical signals are conveyed in the brain. The mechanisms by which we see, hear, think, and pay attentionâ€"and how a "gut feeling" actually originates in the brain. Learning and memory retention, including parallels to computer memory and what they might tell us about our own mental capacity. Development of the brain throughout the life span, with a look at the aging brain. Ackerman provides an enlightening chapter on the connection between the brain's physical condition and various mental disorders and notes what progress can realistically be made toward the prevention and treatment of stroke and other ailments. Finally, she explores the potential for major advances during the "Decade of the Brain," with a look at medical imaging techniquesâ€"what various technologies can and cannot tell usâ€"and how the public and private sectors can contribute to continued advances in neuroscience. This highly readable volume will provide the public and policymakersâ€"and many scientists as wellâ€"with a helpful guide to understanding the many discoveries that are sure to be announced throughout the "Decade of the Brain."
Neural Plasticity and Memory
Author: Federico Bermudez-Rattoni
Publisher: CRC Press
ISBN: 1420008412
Category : Psychology
Languages : en
Pages : 368
Book Description
A comprehensive, multidisciplinary review, Neural Plasticity and Memory: From Genes to Brain Imaging provides an in-depth, up-to-date analysis of the study of the neurobiology of memory. Leading specialists share their scientific experience in the field, covering a wide range of topics where molecular, genetic, behavioral, and brain imaging techniq
Publisher: CRC Press
ISBN: 1420008412
Category : Psychology
Languages : en
Pages : 368
Book Description
A comprehensive, multidisciplinary review, Neural Plasticity and Memory: From Genes to Brain Imaging provides an in-depth, up-to-date analysis of the study of the neurobiology of memory. Leading specialists share their scientific experience in the field, covering a wide range of topics where molecular, genetic, behavioral, and brain imaging techniq
Memory
Author: Larry R. Squire
Publisher: Roberts Publishers
ISBN: 9780981519418
Category : Memory
Languages : en
Pages : 0
Book Description
Combining insights from both cognitive neuroscience and molecular biology, two of the world's leading experts address memory from molecules and cells to brain systems and cognition. What is memory and where in the brain is it stored? How is memory storage accomplished? This book touches on these questions and many more, showing how the recent convergence of psychology and biology has resulted in an exciting new synthesis of knowledge about learning and remembering. Memory: From Mind to Molecules is an ideal primer for courses on learning and memory or for general readers who are interested in discovering what is currently known about one of the basic aspects of human existence.
Publisher: Roberts Publishers
ISBN: 9780981519418
Category : Memory
Languages : en
Pages : 0
Book Description
Combining insights from both cognitive neuroscience and molecular biology, two of the world's leading experts address memory from molecules and cells to brain systems and cognition. What is memory and where in the brain is it stored? How is memory storage accomplished? This book touches on these questions and many more, showing how the recent convergence of psychology and biology has resulted in an exciting new synthesis of knowledge about learning and remembering. Memory: From Mind to Molecules is an ideal primer for courses on learning and memory or for general readers who are interested in discovering what is currently known about one of the basic aspects of human existence.
Mechanisms of Memory
Author: J. David Sweatt
Publisher: Academic Press
ISBN: 0080959199
Category : Psychology
Languages : en
Pages : 362
Book Description
This fully revised second edition provides the only unified synthesis of available information concerning the mechanisms of higher-order memory formation. It spans the range from learning theory, to human and animal behavioral learning models, to cellular physiology and biochemistry. It is unique in its incorporation of chapters on memory disorders, tying in these clinically important syndromes with the basic science of synaptic plasticity and memory mechanisms. It also covers cutting-edge approaches such as the use of genetically engineered animals in studies of memory and memory diseases. Written in an engaging and easily readable style and extensively illustrated with many new, full-color figures to help explain key concepts, this book demystifies the complexities of memory and deepens the reader's understanding. - More than 25% new content, particularly expanding the scope to include new findings in translational research. - Unique in its depth of coverage of molecular and cellular mechanisms - Extensive cross-referencing to Comprehensive Learning and Memory - Discusses clinically relevant memory disorders in the context of modern molecular research and includes numerous practical examples
Publisher: Academic Press
ISBN: 0080959199
Category : Psychology
Languages : en
Pages : 362
Book Description
This fully revised second edition provides the only unified synthesis of available information concerning the mechanisms of higher-order memory formation. It spans the range from learning theory, to human and animal behavioral learning models, to cellular physiology and biochemistry. It is unique in its incorporation of chapters on memory disorders, tying in these clinically important syndromes with the basic science of synaptic plasticity and memory mechanisms. It also covers cutting-edge approaches such as the use of genetically engineered animals in studies of memory and memory diseases. Written in an engaging and easily readable style and extensively illustrated with many new, full-color figures to help explain key concepts, this book demystifies the complexities of memory and deepens the reader's understanding. - More than 25% new content, particularly expanding the scope to include new findings in translational research. - Unique in its depth of coverage of molecular and cellular mechanisms - Extensive cross-referencing to Comprehensive Learning and Memory - Discusses clinically relevant memory disorders in the context of modern molecular research and includes numerous practical examples
Memory Makes the Brain
Author: Christian Hansel
Publisher: World Scientific Publishing Company
ISBN: 9789811228803
Category : Brain
Languages : en
Pages : 0
Book Description
The development of the young brain after birth and the emergence of cognitive capacities, mind, and individuality rest on the maturation of a dense net of synaptic connections between neurons. Memory Makes the Brain describes the dramatic, competitive elimination of surplus synapses that occur in the young, maturing brain -- in a process called synaptic pruning that was discovered by pediatric neurologist Peter Huttenlocher in the 1970's at the University of Chicago. Explaining similarities between developmental pruning and learning processes in the adult brain, neurobiologist Christian Hansel offers a unique perspective on brain adaptation and plasticity throughout lifetime, at times weaving in personal accounts and memories. The cellular plasticity machinery that enables learning is known to be affected in brain developmental disorders such as autism. Memory Makes the Brain explains how both maturation and adult synaptic plasticity are deregulated in autism, and how we begin to trace back autism-typical behavioral abnormalities to such synaptopathies.
Publisher: World Scientific Publishing Company
ISBN: 9789811228803
Category : Brain
Languages : en
Pages : 0
Book Description
The development of the young brain after birth and the emergence of cognitive capacities, mind, and individuality rest on the maturation of a dense net of synaptic connections between neurons. Memory Makes the Brain describes the dramatic, competitive elimination of surplus synapses that occur in the young, maturing brain -- in a process called synaptic pruning that was discovered by pediatric neurologist Peter Huttenlocher in the 1970's at the University of Chicago. Explaining similarities between developmental pruning and learning processes in the adult brain, neurobiologist Christian Hansel offers a unique perspective on brain adaptation and plasticity throughout lifetime, at times weaving in personal accounts and memories. The cellular plasticity machinery that enables learning is known to be affected in brain developmental disorders such as autism. Memory Makes the Brain explains how both maturation and adult synaptic plasticity are deregulated in autism, and how we begin to trace back autism-typical behavioral abnormalities to such synaptopathies.
The Neurobiology of Olfaction
Author: Anna Menini
Publisher: CRC Press
ISBN: 1420071998
Category : Science
Languages : en
Pages : 438
Book Description
Comprehensive Overview of Advances in OlfactionThe common belief is that human smell perception is much reduced compared with other mammals, so that whatever abilities are uncovered and investigated in animal research would have little significance for humans. However, new evidence from a variety of sources indicates this traditional view is likely
Publisher: CRC Press
ISBN: 1420071998
Category : Science
Languages : en
Pages : 438
Book Description
Comprehensive Overview of Advances in OlfactionThe common belief is that human smell perception is much reduced compared with other mammals, so that whatever abilities are uncovered and investigated in animal research would have little significance for humans. However, new evidence from a variety of sources indicates this traditional view is likely
Learning and Memory
Author: Eric R. Kandel
Publisher:
ISBN: 9781621820918
Category : Medical
Languages : en
Pages : 0
Book Description
We learn and remember information by modifying synaptic connections in the neuronal networks of our brain. Depending on the type of information being stored, these changes occur in different regions and different circuits of the brain. The underlying circuit mechanisms are beginning to be understood. These mechanisms are capable of storing or reconstructing memories for periods ranging up to a lifetime, but they are also error-prone, as memories can be distorted or lost. Written and edited by experts in the field, this collection from Cold Spring Harbor Perspectives in Biology examines important aspects of the neurobiology of learning and memory. Contributors review the various types of memory and the anatomical architectures and specialized cells involved. The induction of synaptic and cell-wide changes during memory encoding, the transcriptional and translational programs required for memory stabilization, the molecular signals that actively maintain memories, and the activation of neural ensembles during memory retrieval are comprehensively covered. The authors also discuss the model organisms and state-of-the-art technologies used to elucidate these processes. This volume will serve as a valuable reference for all neurobiologists and biomedical scientists as well as for cognitive and computational neuroscientists wishing to explore the remarkable phenomena of learning and memory.
Publisher:
ISBN: 9781621820918
Category : Medical
Languages : en
Pages : 0
Book Description
We learn and remember information by modifying synaptic connections in the neuronal networks of our brain. Depending on the type of information being stored, these changes occur in different regions and different circuits of the brain. The underlying circuit mechanisms are beginning to be understood. These mechanisms are capable of storing or reconstructing memories for periods ranging up to a lifetime, but they are also error-prone, as memories can be distorted or lost. Written and edited by experts in the field, this collection from Cold Spring Harbor Perspectives in Biology examines important aspects of the neurobiology of learning and memory. Contributors review the various types of memory and the anatomical architectures and specialized cells involved. The induction of synaptic and cell-wide changes during memory encoding, the transcriptional and translational programs required for memory stabilization, the molecular signals that actively maintain memories, and the activation of neural ensembles during memory retrieval are comprehensively covered. The authors also discuss the model organisms and state-of-the-art technologies used to elucidate these processes. This volume will serve as a valuable reference for all neurobiologists and biomedical scientists as well as for cognitive and computational neuroscientists wishing to explore the remarkable phenomena of learning and memory.
Neuroimmune Pharmacology
Author: Tsuneya Ikezu
Publisher: Springer
ISBN: 3319440225
Category : Medical
Languages : en
Pages : 1045
Book Description
The second edition of Neuroimmune Pharmacology bridges the disciplines of neuroscience, immunology and pharmacology from the molecular to clinical levels with particular thought made to engage new research directives and clinical modalities. Bringing together the foremost field authorities from around the world, Neuroimmune Pharmacology will serve as an invaluable resource for the basic and applied scientists of the current decade and beyond.
Publisher: Springer
ISBN: 3319440225
Category : Medical
Languages : en
Pages : 1045
Book Description
The second edition of Neuroimmune Pharmacology bridges the disciplines of neuroscience, immunology and pharmacology from the molecular to clinical levels with particular thought made to engage new research directives and clinical modalities. Bringing together the foremost field authorities from around the world, Neuroimmune Pharmacology will serve as an invaluable resource for the basic and applied scientists of the current decade and beyond.
Brain Theory From A Circuits And Systems Perspective
Author: John Robert Burger
Publisher: Springer Science & Business Media
ISBN: 1461464129
Category : Medical
Languages : en
Pages : 240
Book Description
This book models an idealized neuron as being driven by basic electrical elements, the goal being to systematically characterize the logical properties of neural pulses. In order to constitute a system, neurons as pulsating devices may be represented using novel circuit elements as delineated in this book. A plausible brain system is implied by the delineated elements and logically follows from known and likely properties of a neuron. New to electrical science are novel pulse-related circuit elements involving recursive neurons. A recursive neuron, when properly excited, produces a self-sustaining pulse train that when sampled, provides a true output with a specified probability, and a false output with complementary probability. Because of its similarity to the qubits of quantum mechanics, the recursive pulsating neuron is termed a simulated qubit. Recursive neurons easily function as controlled toggle devices and so are capable of massively parallel calculations, this being a new dimension in brain functioning as described in this book. Simulated qubits and their possibilities are compared to the qubits of quantum physics. Included in the book are suggested neural circuits for associative memory search via a randomized process of cue selection, and neural circuits for priority calculations. These serve to select returns from long term memory, which in turn determines one's next conscious thought or action based on past memorized experiences. The book reports on proposals involving electron tunneling between synapses, and quantum computations within neurons. Although not a textbook, there are easy exercises at the ends of chapters, and in the appendix there are twelve simulation experiments concerning neurons.
Publisher: Springer Science & Business Media
ISBN: 1461464129
Category : Medical
Languages : en
Pages : 240
Book Description
This book models an idealized neuron as being driven by basic electrical elements, the goal being to systematically characterize the logical properties of neural pulses. In order to constitute a system, neurons as pulsating devices may be represented using novel circuit elements as delineated in this book. A plausible brain system is implied by the delineated elements and logically follows from known and likely properties of a neuron. New to electrical science are novel pulse-related circuit elements involving recursive neurons. A recursive neuron, when properly excited, produces a self-sustaining pulse train that when sampled, provides a true output with a specified probability, and a false output with complementary probability. Because of its similarity to the qubits of quantum mechanics, the recursive pulsating neuron is termed a simulated qubit. Recursive neurons easily function as controlled toggle devices and so are capable of massively parallel calculations, this being a new dimension in brain functioning as described in this book. Simulated qubits and their possibilities are compared to the qubits of quantum physics. Included in the book are suggested neural circuits for associative memory search via a randomized process of cue selection, and neural circuits for priority calculations. These serve to select returns from long term memory, which in turn determines one's next conscious thought or action based on past memorized experiences. The book reports on proposals involving electron tunneling between synapses, and quantum computations within neurons. Although not a textbook, there are easy exercises at the ends of chapters, and in the appendix there are twelve simulation experiments concerning neurons.