Author: FARID. BENYAHIA
Publisher: CRC Press
ISBN: 9780367728021
Category :
Languages : en
Pages : 198
Book Description
"This book is an attempt to provide the latest knowledge, state of the art and demystify outstanding issues that delay the deployment of the technology on a large scale. It explains the energy advantage of membrane distillation for desalination when compared to traditional techniques such as thermal or reverse osmosis"--
Membrane-Distillation in Desalination
Membrane Distillation: Materials and Processes
Author: Enrcio Drioli
Publisher:
ISBN: 9781536174489
Category :
Languages : en
Pages : 347
Book Description
Desalination is imperative to mitigate the global water scarcity as it produces drinking water from unpotable water. Currently, reverse osmosis membrane processes are widely used and account for 60% of desalination plants globally as they have lower energy requirements than other techniques, such as thermal desalination. Another promising alternative to desalination is membrane distillation (MD), which has been highlighted as one of the most promising and cost-effective desalination technologies over the last five decades. MD is a thermally driven desalination process that uses microporous and hydrophobic membranes through which only vapor can pass. Because non-volatile ions cannot pass through the membrane, MD theoretically achieves 100% salt rejection. In addition, MD is superior to other techniques as it is conducted at relatively low temperature and pressure, and is less sensitive to the feed concentration. MD is a desalination process that uses the vapor pressure difference between the feed and permeate as the driving force through the membranes. Over 2,800 scientific publications appeared in Web of Science as of September 2019 (over 400 just in 2019) describing the current state of development and potential future applications of MD. Although these publications provide excellent knowledge regarding MD, they are rather fragmented, and it is difficult to gain a complete overview of the basic principles and functions of membranes for MD configurations and their application to real plants. In this book, we introduce MD from the invention of this technique to the recent developments in membranes and processes. The membrane materials and configurations of MD processes are systematically discussed, along with an introduction to real pilot plants that have been installed and tested in the field, and an economic analysis of MD. The objective of this book is to provide a short, but reasonably comprehensive, introduction to MD to graduate students and persons with an engineering or natural science background, to gain a basic understanding of MD, and the associated materials, configurations, and applications, without studying a large number of different reference books.
Publisher:
ISBN: 9781536174489
Category :
Languages : en
Pages : 347
Book Description
Desalination is imperative to mitigate the global water scarcity as it produces drinking water from unpotable water. Currently, reverse osmosis membrane processes are widely used and account for 60% of desalination plants globally as they have lower energy requirements than other techniques, such as thermal desalination. Another promising alternative to desalination is membrane distillation (MD), which has been highlighted as one of the most promising and cost-effective desalination technologies over the last five decades. MD is a thermally driven desalination process that uses microporous and hydrophobic membranes through which only vapor can pass. Because non-volatile ions cannot pass through the membrane, MD theoretically achieves 100% salt rejection. In addition, MD is superior to other techniques as it is conducted at relatively low temperature and pressure, and is less sensitive to the feed concentration. MD is a desalination process that uses the vapor pressure difference between the feed and permeate as the driving force through the membranes. Over 2,800 scientific publications appeared in Web of Science as of September 2019 (over 400 just in 2019) describing the current state of development and potential future applications of MD. Although these publications provide excellent knowledge regarding MD, they are rather fragmented, and it is difficult to gain a complete overview of the basic principles and functions of membranes for MD configurations and their application to real plants. In this book, we introduce MD from the invention of this technique to the recent developments in membranes and processes. The membrane materials and configurations of MD processes are systematically discussed, along with an introduction to real pilot plants that have been installed and tested in the field, and an economic analysis of MD. The objective of this book is to provide a short, but reasonably comprehensive, introduction to MD to graduate students and persons with an engineering or natural science background, to gain a basic understanding of MD, and the associated materials, configurations, and applications, without studying a large number of different reference books.
Membrane Distillation
Author: Mohamed Khayet Souhaimi
Publisher: Elsevier
ISBN: 0080932223
Category : Technology & Engineering
Languages : en
Pages : 493
Book Description
Modern membrane engineering is critical to the development of process-intensification strategies and to the stimulation of industrial growth. Membrane Distillation (MD) is a broad reference that covers specific information on membranes available and methods for MD membrane preparation and characterization. The book offers an introduction to the terminology and fundamental concepts as well as a historical review of MD development. Commercial membranes used in MD as well as laboratory-made membranes, including emerging membranes, are described in detail and illustrated by a number of clear and instructive schematic drawings and images. - A comprehensive review on the development of MD membranes, MD modules, MD membrane characterization, MD configurations, applications in different areas and theoretical models - Introduction to the terminology and fundamental concepts associated with MD as well as an historical review of MD development - Description of commercial membranes used in MD as well as laboratory-made membranes, including emerging membranes
Publisher: Elsevier
ISBN: 0080932223
Category : Technology & Engineering
Languages : en
Pages : 493
Book Description
Modern membrane engineering is critical to the development of process-intensification strategies and to the stimulation of industrial growth. Membrane Distillation (MD) is a broad reference that covers specific information on membranes available and methods for MD membrane preparation and characterization. The book offers an introduction to the terminology and fundamental concepts as well as a historical review of MD development. Commercial membranes used in MD as well as laboratory-made membranes, including emerging membranes, are described in detail and illustrated by a number of clear and instructive schematic drawings and images. - A comprehensive review on the development of MD membranes, MD modules, MD membrane characterization, MD configurations, applications in different areas and theoretical models - Introduction to the terminology and fundamental concepts associated with MD as well as an historical review of MD development - Description of commercial membranes used in MD as well as laboratory-made membranes, including emerging membranes
Membrane Distillation Process
Author: Alessandra Criscuoli
Publisher: MDPI
ISBN: 303651211X
Category : Technology & Engineering
Languages : en
Pages : 190
Book Description
The book deals with the latest research on membrane distillation. New membrane and module designs, low-temperature applications, integration with other membrane units and pilot scale investigations are presented and discussed.
Publisher: MDPI
ISBN: 303651211X
Category : Technology & Engineering
Languages : en
Pages : 190
Book Description
The book deals with the latest research on membrane distillation. New membrane and module designs, low-temperature applications, integration with other membrane units and pilot scale investigations are presented and discussed.
Membrane Distillation
Author: Kang-Jia Lu
Publisher: CRC Press
ISBN: 1000691004
Category : Science
Languages : en
Pages : 443
Book Description
This book aims to elaborate the basics and recent advances of membrane distillation (MD) as the same shows promise for seawater desalination and wastewater treatment. Starting with fundamentals of MD processes, including the heat and mass transfer analysis, energy evaluation and mathematical modelling, text includes engineering and molecular design of MD membranes. Various types of hybrid systems, including freeze desalination (FD)-MD, MD-crystallization (MDC), pressure retarded osmosis (PRO)-MD and forward osmosis (FO)-MD, will be discussed in this book. Further, it summarizes the future of MD from both industrial and academic perspectives along with energy sources and economic analysis.
Publisher: CRC Press
ISBN: 1000691004
Category : Science
Languages : en
Pages : 443
Book Description
This book aims to elaborate the basics and recent advances of membrane distillation (MD) as the same shows promise for seawater desalination and wastewater treatment. Starting with fundamentals of MD processes, including the heat and mass transfer analysis, energy evaluation and mathematical modelling, text includes engineering and molecular design of MD membranes. Various types of hybrid systems, including freeze desalination (FD)-MD, MD-crystallization (MDC), pressure retarded osmosis (PRO)-MD and forward osmosis (FO)-MD, will be discussed in this book. Further, it summarizes the future of MD from both industrial and academic perspectives along with energy sources and economic analysis.
Membrane Distillation
Author: Enrico Drioli
Publisher: MDPI
ISBN: 3038424609
Category : Science
Languages : en
Pages : 133
Book Description
This book is a printed edition of the Special Issue "Membrane Distillation" that was published in Applied Sciences
Publisher: MDPI
ISBN: 3038424609
Category : Science
Languages : en
Pages : 133
Book Description
This book is a printed edition of the Special Issue "Membrane Distillation" that was published in Applied Sciences
Advances In Water Desalination Technologies
Author: Yoram Cohen
Publisher: World Scientific
ISBN: 9811226997
Category : Technology & Engineering
Languages : en
Pages : 652
Book Description
The book presents chapters from world leaders on water desalination advances with respect to processes, separations materials, and energy and environmental considerations. It provides a balanced discussion of the mature and newer desalination technologies and provides a fundamental assessment of the potential of emerging approaches. Realistic assessments for the feasibility of energy extraction from salinity gradients, desalting high salinity source water, membrane distillation, capacitive deionization, are among the topics discussed. Also, among the topics discussed in the book are recent advances in the desalination application of nanomaterials, carbon nanotubes, and surface structuring of membranes.
Publisher: World Scientific
ISBN: 9811226997
Category : Technology & Engineering
Languages : en
Pages : 652
Book Description
The book presents chapters from world leaders on water desalination advances with respect to processes, separations materials, and energy and environmental considerations. It provides a balanced discussion of the mature and newer desalination technologies and provides a fundamental assessment of the potential of emerging approaches. Realistic assessments for the feasibility of energy extraction from salinity gradients, desalting high salinity source water, membrane distillation, capacitive deionization, are among the topics discussed. Also, among the topics discussed in the book are recent advances in the desalination application of nanomaterials, carbon nanotubes, and surface structuring of membranes.
Fundamentals of Salt Water Desalination
Author: H.T. El-Dessouky
Publisher: Elsevier
ISBN: 0080532128
Category : Technology & Engineering
Languages : en
Pages : 691
Book Description
Industrial desalination of sea and brackish water is becoming an essential part in providing sustainable sources of fresh water for a larger number of communities around the world. Desalination is a main source of fresh water in the Gulf countries, a number of the Caribbean and Mediterranean Islands, and several municipalities in a large number of countries. As the industry expands there is a pressing need to have a clear and well-written textbook that focuses on desalination fundamentals and other industrial aspects.This book focuses on the processes widely used in industry, which include multistage flash desalination and reverse osmosis. Also, other desalination processes with attractive features and high potential are featured. It includes a large number of solved examples, which are explained in simple and careful matter that allow the reader to follow and understand the development. The data used in the development of the examples and case studies are extracted from existing desalination plants.This title also includes comparisons of model predictions against results reported in literature as well as available experimental and industrial data. Several industries include similar unit operation processes, i.e., evaporators, condensers, flashing units, membrane separation, and chemical treatment. Examples of such industries include wastewater treatment, food, petroleum, petrochemical, power generation, and pulp and paper. Process fundamentals and design procedures of such unit processes follow the same procedures given in this textbook.
Publisher: Elsevier
ISBN: 0080532128
Category : Technology & Engineering
Languages : en
Pages : 691
Book Description
Industrial desalination of sea and brackish water is becoming an essential part in providing sustainable sources of fresh water for a larger number of communities around the world. Desalination is a main source of fresh water in the Gulf countries, a number of the Caribbean and Mediterranean Islands, and several municipalities in a large number of countries. As the industry expands there is a pressing need to have a clear and well-written textbook that focuses on desalination fundamentals and other industrial aspects.This book focuses on the processes widely used in industry, which include multistage flash desalination and reverse osmosis. Also, other desalination processes with attractive features and high potential are featured. It includes a large number of solved examples, which are explained in simple and careful matter that allow the reader to follow and understand the development. The data used in the development of the examples and case studies are extracted from existing desalination plants.This title also includes comparisons of model predictions against results reported in literature as well as available experimental and industrial data. Several industries include similar unit operation processes, i.e., evaporators, condensers, flashing units, membrane separation, and chemical treatment. Examples of such industries include wastewater treatment, food, petroleum, petrochemical, power generation, and pulp and paper. Process fundamentals and design procedures of such unit processes follow the same procedures given in this textbook.
Membrane and Desalination Technologies
Author: Lawrence K. Wang
Publisher: Springer Science & Business Media
ISBN: 1597452785
Category : Science
Languages : en
Pages : 728
Book Description
In this essential new volume, Volume 13: Membrane and Desalination Technologies, a panel of expert researchers provide a wealth of information on membrane and desalination technologies. An advanced chemical and environmental engineering textbook as well as a comprehensive reference book, this volume is of high value to advanced graduate and undergraduate students, researchers, scientists, and designers of water and wastewater treatment systems. This is an essential part of the Handbook of Environmental Engineering series, an incredible collection of methodologies that study the effects of pollution and waste in their three basic forms: gas, solid, and liquid. Chapters adopt the series format, employing methods of practical design and calculation illustrated by numerical examples, including pertinent cost data whenever possible, and exploring in great detail the fundamental principles of the field. Volume 13: Membrane and Desalination Technologies is an essential guide for researchers, highlighting the latest developments in principles of membrane technology, membrane systems planning and design, industrial and municipal waste treatments, desalination requirements, wastewater reclamation, biofiltration, and more.
Publisher: Springer Science & Business Media
ISBN: 1597452785
Category : Science
Languages : en
Pages : 728
Book Description
In this essential new volume, Volume 13: Membrane and Desalination Technologies, a panel of expert researchers provide a wealth of information on membrane and desalination technologies. An advanced chemical and environmental engineering textbook as well as a comprehensive reference book, this volume is of high value to advanced graduate and undergraduate students, researchers, scientists, and designers of water and wastewater treatment systems. This is an essential part of the Handbook of Environmental Engineering series, an incredible collection of methodologies that study the effects of pollution and waste in their three basic forms: gas, solid, and liquid. Chapters adopt the series format, employing methods of practical design and calculation illustrated by numerical examples, including pertinent cost data whenever possible, and exploring in great detail the fundamental principles of the field. Volume 13: Membrane and Desalination Technologies is an essential guide for researchers, highlighting the latest developments in principles of membrane technology, membrane systems planning and design, industrial and municipal waste treatments, desalination requirements, wastewater reclamation, biofiltration, and more.
Modeling in Membranes and Membrane-Based Processes
Author: Anirban Roy
Publisher: John Wiley & Sons
ISBN: 1119536065
Category : Science
Languages : en
Pages : 412
Book Description
The book Modeling in Membranes and Membrane-Based Processes is based on the idea of developing a reference which will cover most relevant and “state-of-the-art” approaches in membrane modeling. This book explores almost every major aspect of modeling and the techniques applied in membrane separation studies and applications. This includes first principle-based models, thermodynamics models, computational fluid dynamics simulations, molecular dynamics simulations, and artificial intelligence-based modeling for membrane separation processes. These models have been discussed in light of various applications ranging from desalination to gas separation. In addition, this breakthrough new volume covers the fundamentals of polymer membrane pore formation mechanisms, covering not only a wide range of modeling techniques, but also has various facets of membrane-based applications. Thus, this book can be an excellent source for a holistic perspective on membranes in general, as well as a comprehensive and valuable reference work. Whether a veteran engineer in the field or lab or a student in chemical or process engineering, this latest volume in the “Advances in Membrane Processes” is a must-have, along with the first book in the series, Membrane Processes, also available from Wiley-Scrivener.
Publisher: John Wiley & Sons
ISBN: 1119536065
Category : Science
Languages : en
Pages : 412
Book Description
The book Modeling in Membranes and Membrane-Based Processes is based on the idea of developing a reference which will cover most relevant and “state-of-the-art” approaches in membrane modeling. This book explores almost every major aspect of modeling and the techniques applied in membrane separation studies and applications. This includes first principle-based models, thermodynamics models, computational fluid dynamics simulations, molecular dynamics simulations, and artificial intelligence-based modeling for membrane separation processes. These models have been discussed in light of various applications ranging from desalination to gas separation. In addition, this breakthrough new volume covers the fundamentals of polymer membrane pore formation mechanisms, covering not only a wide range of modeling techniques, but also has various facets of membrane-based applications. Thus, this book can be an excellent source for a holistic perspective on membranes in general, as well as a comprehensive and valuable reference work. Whether a veteran engineer in the field or lab or a student in chemical or process engineering, this latest volume in the “Advances in Membrane Processes” is a must-have, along with the first book in the series, Membrane Processes, also available from Wiley-Scrivener.