Author: Inderjit Chopra
Publisher: Cambridge University Press
ISBN: 052186657X
Category : Science
Languages : en
Pages : 925
Book Description
This book focuses on smart materials and structures, which are also referred to as intelligent, adaptive, active, sensory, and metamorphic. The ultimate goal is to develop biologically inspired multifunctional materials with the capability to adapt their structural characteristics, monitor their health condition, perform self-diagnosis and self-repair, morph their shape, and undergo significant controlled motion.
Smart Structures Theory
Shape Memory Alloys
Author: M. Fremond
Publisher: Springer
ISBN: 3709143489
Category : Technology & Engineering
Languages : en
Pages : 152
Book Description
This book consists of two chapters. The first chapter deals with the thermomechanical macroscopic theory describing the transformation and deformation behavior of shape memory alloys. The second chapter deals with the extensive and fundamental review of the experimental works which include crystallography, transformations and mechanical characteristics in Ti-Ni, Cu-base and ferrous shape memory alloys.
Publisher: Springer
ISBN: 3709143489
Category : Technology & Engineering
Languages : en
Pages : 152
Book Description
This book consists of two chapters. The first chapter deals with the thermomechanical macroscopic theory describing the transformation and deformation behavior of shape memory alloys. The second chapter deals with the extensive and fundamental review of the experimental works which include crystallography, transformations and mechanical characteristics in Ti-Ni, Cu-base and ferrous shape memory alloys.
Shape-Memory Alloys Handbook
Author: Christian Lexcellent
Publisher: John Wiley & Sons
ISBN: 1118577957
Category : Technology & Engineering
Languages : en
Pages : 295
Book Description
The aim of this book is to understand and describe the martensitic phase transformation and the process of martensite platelet reorientation. These two key elements enable the author to introduce the main features associated with the behavior of shape-memory alloys (SMAs), i.e. the one-way shape-memory effect, pseudo-elasticity, training and recovery. Attention is paid in particular to the thermodynamical frame for solid materials modeling at the macroscopic scale and its applications, as well as to the particular use of such alloys – the simplified calculations for the bending of bars and their torsion. Other chapters are devoted to key topics such as the use of the “crystallographical theory of martensite” for SMA modeling, phenomenological and statistical investigations of SMAs, magneto-thermo-mechanical behavior of magnetic SMAs and the fracture mechanics of SMAs. Case studies are provided on the dimensioning of SMA elements offering the reader an additional useful framework on the subject. Contents 1. Some General Points about SMAs. 2. The World of Shape-memory Alloys. 3. Martensitic Transformation. 4. Thermodynamic Framework for the Modeling of Solid Materials. 5. Use of the “CTM” to Model SMAs. 6. Phenomenological and Statistical Approaches for SMAs. 7. Macroscopic Models with Internal Variables. 8. Design of SMA Elements: Case Studies. 9. Behavior of Magnetic SMAs. 10. Fracture Mechanics of SMAs. 11. General Conclusion. Appendix 1. Intrinsic Properties of Rotation Matrices. Appendix 2. “Twinning Equation” Demonstration. Appendix 3. Calculation of the Parameters a, n and Q from the “Twinning” Equation. Appendix 4. “Twinned” Austenite/Martensite Equation. About the Authors Christian Lexcellent is Emeritus Professor at the École National Supérieure de Mécanique et des Microtechniques de Besançon and a researcher in the Department of Applied Mechanics at FEMTO-ST in France. He is a specialist in the mechanics of materials and phase transition and has taught in the subjects of mechanics of continuum media and shape memory alloys. He is also a member of the International Committee of ESOMAT.
Publisher: John Wiley & Sons
ISBN: 1118577957
Category : Technology & Engineering
Languages : en
Pages : 295
Book Description
The aim of this book is to understand and describe the martensitic phase transformation and the process of martensite platelet reorientation. These two key elements enable the author to introduce the main features associated with the behavior of shape-memory alloys (SMAs), i.e. the one-way shape-memory effect, pseudo-elasticity, training and recovery. Attention is paid in particular to the thermodynamical frame for solid materials modeling at the macroscopic scale and its applications, as well as to the particular use of such alloys – the simplified calculations for the bending of bars and their torsion. Other chapters are devoted to key topics such as the use of the “crystallographical theory of martensite” for SMA modeling, phenomenological and statistical investigations of SMAs, magneto-thermo-mechanical behavior of magnetic SMAs and the fracture mechanics of SMAs. Case studies are provided on the dimensioning of SMA elements offering the reader an additional useful framework on the subject. Contents 1. Some General Points about SMAs. 2. The World of Shape-memory Alloys. 3. Martensitic Transformation. 4. Thermodynamic Framework for the Modeling of Solid Materials. 5. Use of the “CTM” to Model SMAs. 6. Phenomenological and Statistical Approaches for SMAs. 7. Macroscopic Models with Internal Variables. 8. Design of SMA Elements: Case Studies. 9. Behavior of Magnetic SMAs. 10. Fracture Mechanics of SMAs. 11. General Conclusion. Appendix 1. Intrinsic Properties of Rotation Matrices. Appendix 2. “Twinning Equation” Demonstration. Appendix 3. Calculation of the Parameters a, n and Q from the “Twinning” Equation. Appendix 4. “Twinned” Austenite/Martensite Equation. About the Authors Christian Lexcellent is Emeritus Professor at the École National Supérieure de Mécanique et des Microtechniques de Besançon and a researcher in the Department of Applied Mechanics at FEMTO-ST in France. He is a specialist in the mechanics of materials and phase transition and has taught in the subjects of mechanics of continuum media and shape memory alloys. He is also a member of the International Committee of ESOMAT.
Phase Transitions in Ferroelastic and Co-elastic Crystals
Author: E. K. Salje
Publisher: Cambridge University Press
ISBN: 9780521429368
Category : Science
Languages : en
Pages : 304
Book Description
This textbook describes the fundamental principles of structural phase transitions in materials in an easily understandable form, suitable for both undergraduate and graduate students.
Publisher: Cambridge University Press
ISBN: 9780521429368
Category : Science
Languages : en
Pages : 304
Book Description
This textbook describes the fundamental principles of structural phase transitions in materials in an easily understandable form, suitable for both undergraduate and graduate students.
IUTAM Symposium on Mechanics of Martensitic Phase Transformation in Solids
Author: Qing-Ping Sun
Publisher: Springer Science & Business Media
ISBN: 9401700699
Category : Technology & Engineering
Languages : en
Pages : 278
Book Description
Phase transition phenomena in solids are of vital interest to physicists, materials scientists, and engineers who need to understand and model the mechanical behavior of solids during various kinds of phase transformations. This volume is a collection of 29 written contributions by distinguished invited speakers from 14 countries to the IUTAM Symposium on Mechanics of Martensitic Phase Transformation in Solids, the first IUTAM Symposium focusing on this topic. It contains basic theoretical and experimental aspects of the recent advances in the mechanics research of martensitic phase transformations. The main topics include microstructure and interfaces, material instability and its propagation, micromechanics approaches, interaction between plasticity and phase transformation, phase transformation in thin films, single and polycrystalline shape memory alloys, shape memory polymers, TRIP steels, etc. Due to the multidisciplinary nature of the research covered, this volume will be of interest to researchers, graduate students and engineers in the field of theoretical and applied mechanics as well as materials science and technology.
Publisher: Springer Science & Business Media
ISBN: 9401700699
Category : Technology & Engineering
Languages : en
Pages : 278
Book Description
Phase transition phenomena in solids are of vital interest to physicists, materials scientists, and engineers who need to understand and model the mechanical behavior of solids during various kinds of phase transformations. This volume is a collection of 29 written contributions by distinguished invited speakers from 14 countries to the IUTAM Symposium on Mechanics of Martensitic Phase Transformation in Solids, the first IUTAM Symposium focusing on this topic. It contains basic theoretical and experimental aspects of the recent advances in the mechanics research of martensitic phase transformations. The main topics include microstructure and interfaces, material instability and its propagation, micromechanics approaches, interaction between plasticity and phase transformation, phase transformation in thin films, single and polycrystalline shape memory alloys, shape memory polymers, TRIP steels, etc. Due to the multidisciplinary nature of the research covered, this volume will be of interest to researchers, graduate students and engineers in the field of theoretical and applied mechanics as well as materials science and technology.
Shape Memory Effects in Alloys
Author: Jeff Perkins
Publisher: Springer Science & Business Media
ISBN: 1468422111
Category : Technology & Engineering
Languages : en
Pages : 577
Book Description
The International Symposium on Shape Memory Effects and Appli cations was held at the University of Toronto on May 19-20, 1975, in four sessions over two days, as part of the regular 1975 Spring Meeting of The Metallurgical Society of AlME, sponsored by the Physical Metallurgy Committee of The Metallurgical Society. This was the first symposium on the subject, the only previous meeting at all related being the 1968 NOL Symposium on TiNi and Associated Compounds. One of the major intentions of this Symposium was to provide a forum for cross-communication between workers in the diverse metallurgical areas pertinent to shape memory effects, areas such as martensitic transformation, crystallography and thermodynamics, mechanical behavior, stress-induced transformation, lattice sta bility, and alloy development. Authors were encouraged to place an emphasis on delineation of general controlling factors and mech anisms, and on comparison of shape memory effect alloy systems with systems not exhibiting SME.
Publisher: Springer Science & Business Media
ISBN: 1468422111
Category : Technology & Engineering
Languages : en
Pages : 577
Book Description
The International Symposium on Shape Memory Effects and Appli cations was held at the University of Toronto on May 19-20, 1975, in four sessions over two days, as part of the regular 1975 Spring Meeting of The Metallurgical Society of AlME, sponsored by the Physical Metallurgy Committee of The Metallurgical Society. This was the first symposium on the subject, the only previous meeting at all related being the 1968 NOL Symposium on TiNi and Associated Compounds. One of the major intentions of this Symposium was to provide a forum for cross-communication between workers in the diverse metallurgical areas pertinent to shape memory effects, areas such as martensitic transformation, crystallography and thermodynamics, mechanical behavior, stress-induced transformation, lattice sta bility, and alloy development. Authors were encouraged to place an emphasis on delineation of general controlling factors and mech anisms, and on comparison of shape memory effect alloy systems with systems not exhibiting SME.
Microstructure of Martensite
Author: Kaushik Bhattacharya
Publisher: Oxford University Press
ISBN: 9780198509349
Category : Computers
Languages : en
Pages : 308
Book Description
Martensites are crystalline solids that display dazzling patterns at the microscopic scales. This microstructure gives rise to unusual macroscopic properties like the shape-memory effect. Starting with the crystalline structure, this book describes a theoretical framework for studying martensites and uses the theory to explain why these materials form microstructure. The macrostructure consequences of the microstructure are subsequently discussed. Complete with a piece of shape-memory wire and numerous examples from real materials, this book represents a successful case study in multiscale modeling, giving a clear understanding of the link between microstructure and macrostructure properties. Beautifully written, in a most clear and pedagogical manner, it holds appeal for a broad audience. On the one hand, it introduces modern modeling techniques to those trained in materials science, mechanics and physics and shows how these techniques can be used in real-world problems. On the other hand, it introduces physical phenomena to those trained in mathematics, and demonstrates how such phenomena give rise to interesting mathematical problems.
Publisher: Oxford University Press
ISBN: 9780198509349
Category : Computers
Languages : en
Pages : 308
Book Description
Martensites are crystalline solids that display dazzling patterns at the microscopic scales. This microstructure gives rise to unusual macroscopic properties like the shape-memory effect. Starting with the crystalline structure, this book describes a theoretical framework for studying martensites and uses the theory to explain why these materials form microstructure. The macrostructure consequences of the microstructure are subsequently discussed. Complete with a piece of shape-memory wire and numerous examples from real materials, this book represents a successful case study in multiscale modeling, giving a clear understanding of the link between microstructure and macrostructure properties. Beautifully written, in a most clear and pedagogical manner, it holds appeal for a broad audience. On the one hand, it introduces modern modeling techniques to those trained in materials science, mechanics and physics and shows how these techniques can be used in real-world problems. On the other hand, it introduces physical phenomena to those trained in mathematics, and demonstrates how such phenomena give rise to interesting mathematical problems.
Magnetism and Structure in Functional Materials
Author: Antoni Planes
Publisher: Springer Science & Business Media
ISBN: 3540316310
Category : Science
Languages : en
Pages : 261
Book Description
Magnetism and Structure in Functional Materials addresses three distinct but related topics: (i) magnetoelastic materials such as magnetic martensites and magnetic shape memory alloys, (ii) the magnetocaloric effect related to magnetostructural transitions, and (iii) colossal magnetoresistance (CMR) and related manganites. The goal is to identify common underlying principles in these classes of materials that are relevant for optimizing various functionalities. The emergence of apparently different magnetic/structural phenomena in disparate classes of materials clearly points to a need for common concepts in order to achieve a broader understanding of the interplay between magnetism and structure in this general class of new functional materials exhibiting ever more complex microstructure and function. The topic is interdisciplinary in nature and the contributors correspondingly include physicists, materials scientists and engineers. Likewise the book will appeal to scientists from all these areas.
Publisher: Springer Science & Business Media
ISBN: 3540316310
Category : Science
Languages : en
Pages : 261
Book Description
Magnetism and Structure in Functional Materials addresses three distinct but related topics: (i) magnetoelastic materials such as magnetic martensites and magnetic shape memory alloys, (ii) the magnetocaloric effect related to magnetostructural transitions, and (iii) colossal magnetoresistance (CMR) and related manganites. The goal is to identify common underlying principles in these classes of materials that are relevant for optimizing various functionalities. The emergence of apparently different magnetic/structural phenomena in disparate classes of materials clearly points to a need for common concepts in order to achieve a broader understanding of the interplay between magnetism and structure in this general class of new functional materials exhibiting ever more complex microstructure and function. The topic is interdisciplinary in nature and the contributors correspondingly include physicists, materials scientists and engineers. Likewise the book will appeal to scientists from all these areas.
Phase Change in Mechanics
Author: Michel Frémond
Publisher: Springer Science & Business Media
ISBN: 3642246095
Category : Mathematics
Languages : en
Pages : 313
Book Description
Predictive theories of phenomena involving phase change with applications in engineering are investigated in this volume, e.g. solid-liquid phase change, volume and surface damage, and phase change involving temperature discontinuities. Many other phase change phenomena such as solid-solid phase change in shape memory alloys and vapor-liquid phase change are also explored. Modeling is based on continuum thermo-mechanics. This involves a renewed principle of virtual power introducing the power of the microscopic motions responsible for phase change. This improvement yields a new equation of motion related to microscopic motions, beyond the classical equation of motion for macroscopic motions. The new theory sensibly improves the phase change modeling. For example, when warm rain falls on frozen soil, the dangerous black ice phenomenon can be comprehensively predicted. In addition, novel equations predict the evolution of clouds, which are themselves a mixture of air, liquid water and vapor.
Publisher: Springer Science & Business Media
ISBN: 3642246095
Category : Mathematics
Languages : en
Pages : 313
Book Description
Predictive theories of phenomena involving phase change with applications in engineering are investigated in this volume, e.g. solid-liquid phase change, volume and surface damage, and phase change involving temperature discontinuities. Many other phase change phenomena such as solid-solid phase change in shape memory alloys and vapor-liquid phase change are also explored. Modeling is based on continuum thermo-mechanics. This involves a renewed principle of virtual power introducing the power of the microscopic motions responsible for phase change. This improvement yields a new equation of motion related to microscopic motions, beyond the classical equation of motion for macroscopic motions. The new theory sensibly improves the phase change modeling. For example, when warm rain falls on frozen soil, the dangerous black ice phenomenon can be comprehensively predicted. In addition, novel equations predict the evolution of clouds, which are themselves a mixture of air, liquid water and vapor.
Continuum Models for Phase Transitions and Twinning in Crystals
Author: Mario Pitteri
Publisher: CRC Press
ISBN: 1420036149
Category : Mathematics
Languages : en
Pages : 390
Book Description
Continuum Models for Phase Transitions and Twinning in Crystals presents the fundamentals of a remarkably successful approach to crystal thermomechanics. Developed over the last two decades, it is based on the mathematical theory of nonlinear thermoelasticity, in which a new viewpoint on material symmetry, motivated by molecular theories, plays a c
Publisher: CRC Press
ISBN: 1420036149
Category : Mathematics
Languages : en
Pages : 390
Book Description
Continuum Models for Phase Transitions and Twinning in Crystals presents the fundamentals of a remarkably successful approach to crystal thermomechanics. Developed over the last two decades, it is based on the mathematical theory of nonlinear thermoelasticity, in which a new viewpoint on material symmetry, motivated by molecular theories, plays a c