Author: David W. A. Rees
Publisher: John Wiley & Sons
ISBN: 9780470747810
Category : Technology & Engineering
Languages : en
Pages : 582
Book Description
In a global climate where engineers are increasingly under pressure to make the most of limited resources, there are huge potential financial and environmental benefits to be gained by designing for minimum weight. With Mechanics of Optimal Structural Design, David Rees brings the original approach of weight optimization to the existing structural design literature, providing a methodology for attaining minimum weight of a range of structures under their working loads. He addresses the current gap in education between formal structural design teaching at undergraduate level and the practical application of this knowledge in industry, describing the analytical techniques that students need to understand before applying computational techniques that can be easy to misuse without this grounding. Shows engineers how to approach structural design for minimum weight in clear, concise terms Contains many new least-weight design techniques, taking into consideration different manners of loading and including new topics that have not previously been considered within the least-weight theme Considers the demands for least-weight road, air and space vehicles for the future Enhanced by illustrative worked examples to enlighten the theory, exercises at the end of each chapter that enable application of the theory covered, and an accompanying website with worked examples and solutions housed at www.wiley.com/go/rees The least-weight analyses of basic structural elements ensure a spread of interest with many applications in mechanical, civil, aircraft and automobile engineering. Consequently, this book fills the gap between the basic material taught at undergraduate level and other approaches to optimum design, for example computer simulations and the finite element method.
Mechanics of Optimal Structural Design
Author: David W. A. Rees
Publisher: John Wiley & Sons
ISBN: 9780470747810
Category : Technology & Engineering
Languages : en
Pages : 582
Book Description
In a global climate where engineers are increasingly under pressure to make the most of limited resources, there are huge potential financial and environmental benefits to be gained by designing for minimum weight. With Mechanics of Optimal Structural Design, David Rees brings the original approach of weight optimization to the existing structural design literature, providing a methodology for attaining minimum weight of a range of structures under their working loads. He addresses the current gap in education between formal structural design teaching at undergraduate level and the practical application of this knowledge in industry, describing the analytical techniques that students need to understand before applying computational techniques that can be easy to misuse without this grounding. Shows engineers how to approach structural design for minimum weight in clear, concise terms Contains many new least-weight design techniques, taking into consideration different manners of loading and including new topics that have not previously been considered within the least-weight theme Considers the demands for least-weight road, air and space vehicles for the future Enhanced by illustrative worked examples to enlighten the theory, exercises at the end of each chapter that enable application of the theory covered, and an accompanying website with worked examples and solutions housed at www.wiley.com/go/rees The least-weight analyses of basic structural elements ensure a spread of interest with many applications in mechanical, civil, aircraft and automobile engineering. Consequently, this book fills the gap between the basic material taught at undergraduate level and other approaches to optimum design, for example computer simulations and the finite element method.
Publisher: John Wiley & Sons
ISBN: 9780470747810
Category : Technology & Engineering
Languages : en
Pages : 582
Book Description
In a global climate where engineers are increasingly under pressure to make the most of limited resources, there are huge potential financial and environmental benefits to be gained by designing for minimum weight. With Mechanics of Optimal Structural Design, David Rees brings the original approach of weight optimization to the existing structural design literature, providing a methodology for attaining minimum weight of a range of structures under their working loads. He addresses the current gap in education between formal structural design teaching at undergraduate level and the practical application of this knowledge in industry, describing the analytical techniques that students need to understand before applying computational techniques that can be easy to misuse without this grounding. Shows engineers how to approach structural design for minimum weight in clear, concise terms Contains many new least-weight design techniques, taking into consideration different manners of loading and including new topics that have not previously been considered within the least-weight theme Considers the demands for least-weight road, air and space vehicles for the future Enhanced by illustrative worked examples to enlighten the theory, exercises at the end of each chapter that enable application of the theory covered, and an accompanying website with worked examples and solutions housed at www.wiley.com/go/rees The least-weight analyses of basic structural elements ensure a spread of interest with many applications in mechanical, civil, aircraft and automobile engineering. Consequently, this book fills the gap between the basic material taught at undergraduate level and other approaches to optimum design, for example computer simulations and the finite element method.
Problems and Methods of Optimal Structural Design
Author: Nikolai Vladimirovich Banichuk
Publisher: Springer Science & Business Media
ISBN: 1461336767
Category : Computers
Languages : en
Pages : 326
Book Description
The author offers a systematic and careful development of many aspects of structural optimization, particularly for beams and plates. Some of the results are new and some have appeared only in specialized Soviet journals, or as pro ceedings of conferences, and are not easily accessible to Western engineers and mathematicians. Some aspects of the theory presented here, such as optimiza tion of anisotropic properties of elastic structural elements, have not been con sidered to any extent by Western research engineers. The author's treatment is "classical", i.e., employing classical analysis. Classical calculus of variations, the complex variables approach, and the Kolosov Muskhelishvili theory are the basic techniques used. He derives many results that are of interest to practical structural engineers, such as optimum designs of structural elements submerged in a flowing fluid (which is of obvious interest in aircraft design, in ship building, in designing turbines, etc.). Optimization with incomplete information concerning the loads (which is the case in a great majority of practical design considerations) is treated thoroughly. For example, one can only estimate the weight of the traffic on a bridge, the wind load, the additional loads if a river floods, or possible earthquake loads.
Publisher: Springer Science & Business Media
ISBN: 1461336767
Category : Computers
Languages : en
Pages : 326
Book Description
The author offers a systematic and careful development of many aspects of structural optimization, particularly for beams and plates. Some of the results are new and some have appeared only in specialized Soviet journals, or as pro ceedings of conferences, and are not easily accessible to Western engineers and mathematicians. Some aspects of the theory presented here, such as optimiza tion of anisotropic properties of elastic structural elements, have not been con sidered to any extent by Western research engineers. The author's treatment is "classical", i.e., employing classical analysis. Classical calculus of variations, the complex variables approach, and the Kolosov Muskhelishvili theory are the basic techniques used. He derives many results that are of interest to practical structural engineers, such as optimum designs of structural elements submerged in a flowing fluid (which is of obvious interest in aircraft design, in ship building, in designing turbines, etc.). Optimization with incomplete information concerning the loads (which is the case in a great majority of practical design considerations) is treated thoroughly. For example, one can only estimate the weight of the traffic on a bridge, the wind load, the additional loads if a river floods, or possible earthquake loads.
Optimal Structural Design under Stability Constraints
Author: Antoni Gajewski
Publisher: Springer Science & Business Media
ISBN: 9400927541
Category : Science
Languages : en
Pages : 480
Book Description
The first optimal design problem for an elastic column subject to buckling was formulated by Lagrange over 200 years ago. However, rapid development of structural optimization under stability constraints occurred only in the last twenty years. In numerous optimal structural design problems the stability phenomenon becomes one of the most important factors, particularly for slender and thin-walled elements of aerospace structures, ships, precision machines, tall buildings etc. In engineering practice stability constraints appear more often than it might be expected; even when designing a simple beam of constant width and variable depth, the width - if regarded as a design variable - is finally determined by a stability constraint (lateral stability). Mathematically, optimal structural design under stability constraints usually leads to optimization with respect to eigenvalues, but some cases fall even beyond this type of problems. A total of over 70 books has been devoted to structural optimization as yet, but none of them has treated stability constraints in a sufficiently broad and comprehensive manner. The purpose of the present book is to fill this gap. The contents include a discussion of the basic structural stability and structural optimization problems and the pertinent solution methods, followed by a systematic review of solutions obtained for columns, arches, bar systems, plates, shells and thin-walled bars. A unified approach based on Pontryagin's maximum principle is employed inasmuch as possible, at least to problems of columns, arches and plates. Parametric optimization is discussed as well.
Publisher: Springer Science & Business Media
ISBN: 9400927541
Category : Science
Languages : en
Pages : 480
Book Description
The first optimal design problem for an elastic column subject to buckling was formulated by Lagrange over 200 years ago. However, rapid development of structural optimization under stability constraints occurred only in the last twenty years. In numerous optimal structural design problems the stability phenomenon becomes one of the most important factors, particularly for slender and thin-walled elements of aerospace structures, ships, precision machines, tall buildings etc. In engineering practice stability constraints appear more often than it might be expected; even when designing a simple beam of constant width and variable depth, the width - if regarded as a design variable - is finally determined by a stability constraint (lateral stability). Mathematically, optimal structural design under stability constraints usually leads to optimization with respect to eigenvalues, but some cases fall even beyond this type of problems. A total of over 70 books has been devoted to structural optimization as yet, but none of them has treated stability constraints in a sufficiently broad and comprehensive manner. The purpose of the present book is to fill this gap. The contents include a discussion of the basic structural stability and structural optimization problems and the pertinent solution methods, followed by a systematic review of solutions obtained for columns, arches, bar systems, plates, shells and thin-walled bars. A unified approach based on Pontryagin's maximum principle is employed inasmuch as possible, at least to problems of columns, arches and plates. Parametric optimization is discussed as well.
Recent Advances in Optimal Structural Design
Author: Scott A. Burns
Publisher: ASCE Publications
ISBN: 9780784475249
Category : Technology & Engineering
Languages : en
Pages : 396
Book Description
Sponsored by the Technical Committee on Structural Design of the Technical Administrative Committee on Analysis and Computation of the Technical Activities Division of the Structural Engineering Institute of ASCE. This report documents the dramatic new developments in the field of structural optimization over the last two decades. Changes in both computational techniques and applications can be seen by developments in computational methods and solution algorithms, the role of optimization during the various stages of structural design, and the stochastic nature of design in relation to structural optimization. Topics include: Ømethods for discrete variable structural optimization; Ødecomposition methods in structural optimization; Østate of the art on the use of genetic algorithms in design of steel structures; Øconceptual design optimization of engineering structures; Øtopology and geometry optimization of trusses and frames; Øevolutionary structural optimization; Ødesign and optimization of semi-rigid framed structures; Øoptimized performance-based design for buildings; Ømulti-objective optimum design of seismic-resistant structures; and Øreliability- and cost-oriented optimal bridge maintenance planning. The book concludes with an extensive bibliography of journal papers on structural optimization published between 1987 and 1999.
Publisher: ASCE Publications
ISBN: 9780784475249
Category : Technology & Engineering
Languages : en
Pages : 396
Book Description
Sponsored by the Technical Committee on Structural Design of the Technical Administrative Committee on Analysis and Computation of the Technical Activities Division of the Structural Engineering Institute of ASCE. This report documents the dramatic new developments in the field of structural optimization over the last two decades. Changes in both computational techniques and applications can be seen by developments in computational methods and solution algorithms, the role of optimization during the various stages of structural design, and the stochastic nature of design in relation to structural optimization. Topics include: Ømethods for discrete variable structural optimization; Ødecomposition methods in structural optimization; Østate of the art on the use of genetic algorithms in design of steel structures; Øconceptual design optimization of engineering structures; Øtopology and geometry optimization of trusses and frames; Øevolutionary structural optimization; Ødesign and optimization of semi-rigid framed structures; Øoptimized performance-based design for buildings; Ømulti-objective optimum design of seismic-resistant structures; and Øreliability- and cost-oriented optimal bridge maintenance planning. The book concludes with an extensive bibliography of journal papers on structural optimization published between 1987 and 1999.
Optimal Design of Complex Mechanical Systems
Author: Giampiero Mastinu
Publisher: Springer Science & Business Media
ISBN: 3540343555
Category : Technology & Engineering
Languages : en
Pages : 359
Book Description
This book presents foundations and practical application of multi-objective optimization methods to Vehicle Design Problems, bolstered with an extensive collection of examples. Opening with a broad theoretical introduction to the optimization of complex mechanical systems and multi-objective optimization methods, the book presents several applications which are extensively exposed here for the first time. The book includes examples of proposed methods to the solution of real vehicle design problems.
Publisher: Springer Science & Business Media
ISBN: 3540343555
Category : Technology & Engineering
Languages : en
Pages : 359
Book Description
This book presents foundations and practical application of multi-objective optimization methods to Vehicle Design Problems, bolstered with an extensive collection of examples. Opening with a broad theoretical introduction to the optimization of complex mechanical systems and multi-objective optimization methods, the book presents several applications which are extensively exposed here for the first time. The book includes examples of proposed methods to the solution of real vehicle design problems.
Applied Mechanics Reviews
Meta-heuristic Algorithms for Optimal Design of Real-Size Structures
Author: Ali Kaveh
Publisher: Springer
ISBN: 3319787802
Category : Technology & Engineering
Languages : en
Pages : 172
Book Description
The contributions in this book discuss large-scale problems like the optimal design of domes, antennas, transmission line towers, barrel vaults and steel frames with different types of limitations such as strength, buckling, displacement and natural frequencies. The authors use a set of definite algorithms for the optimization of all types of structures. They also add a new enhanced version of VPS and information about configuration processes to all chapters. Domes are of special interest to engineers as they enclose a maximum amount of space with a minimum surface and have proven to be very economical in terms of consumption of constructional materials. Antennas and transmission line towers are the one of the most popular structure since these steel lattice towers are inexpensive, strong, light and wind resistant. Architects and engineers choose barrel vaults as viable and often highly suitable forms for covering not only low-cost industrial buildings, warehouses, large-span hangars, indoor sports stadiums, but also large cultural and leisure centers. Steel buildings are preferred in residential as well as commercial buildings due to their high strength and ductility particularly in regions which are prone to earthquakes.
Publisher: Springer
ISBN: 3319787802
Category : Technology & Engineering
Languages : en
Pages : 172
Book Description
The contributions in this book discuss large-scale problems like the optimal design of domes, antennas, transmission line towers, barrel vaults and steel frames with different types of limitations such as strength, buckling, displacement and natural frequencies. The authors use a set of definite algorithms for the optimization of all types of structures. They also add a new enhanced version of VPS and information about configuration processes to all chapters. Domes are of special interest to engineers as they enclose a maximum amount of space with a minimum surface and have proven to be very economical in terms of consumption of constructional materials. Antennas and transmission line towers are the one of the most popular structure since these steel lattice towers are inexpensive, strong, light and wind resistant. Architects and engineers choose barrel vaults as viable and often highly suitable forms for covering not only low-cost industrial buildings, warehouses, large-span hangars, indoor sports stadiums, but also large cultural and leisure centers. Steel buildings are preferred in residential as well as commercial buildings due to their high strength and ductility particularly in regions which are prone to earthquakes.
Optimization in Structural Design
Author: A. Sawczuk
Publisher: Springer Science & Business Media
ISBN: 3642808956
Category : Technology & Engineering
Languages : en
Pages : 601
Book Description
Structural optimization, a broad interdisciplinary field, requires skillful combining of mathematical and mechanical knowledge with engineering. It is both intellectually attractive and technologically rewarding. The Symposium on Optimization in Structural Design was the second IUTAM Symposium in Poland. Fifteen years have elapsed since the Symposium on Nonhomogeneity in Elasticity and Plasticity, presided by Professor Olszak, was held in Warsaw. These fifteen years mean a lot for mechanics in Poland. Continuing the tradition of Professor Maksymilian Tytus Huber's research, considerable development of the mechanical sciences has been achieved in this country mostly due to the knowledge, vision and persistence of Professors Wit old Nowacki and Waclaw Olszak, eminent Members of our Academy. The Institute of Fundamental Technological Research was established, competent research groups grew, matured and contri buted to thermo-elasticity, plasticity, general theory of constitutive equations, and to structural mechanics-just to mention a few do mains. Mechanics is now penetrating into the technology of this country at an accelerating pace. The optimization in mechanics has a tradition in Poland. In 1936 Professor Zbigniew Wasiutynski formulated the optimality criterion for mean stiffness design using an elastic energy concept. Further work in this field has been done since, mostly in the last ten years. On behalf of the Committee for Mechanics of the Polish Academy of Sciences I wish to thank the IUTA1V[ Bureau for the decision to hold in Warsaw the Symposium the present volume contains the contribu tions to.
Publisher: Springer Science & Business Media
ISBN: 3642808956
Category : Technology & Engineering
Languages : en
Pages : 601
Book Description
Structural optimization, a broad interdisciplinary field, requires skillful combining of mathematical and mechanical knowledge with engineering. It is both intellectually attractive and technologically rewarding. The Symposium on Optimization in Structural Design was the second IUTAM Symposium in Poland. Fifteen years have elapsed since the Symposium on Nonhomogeneity in Elasticity and Plasticity, presided by Professor Olszak, was held in Warsaw. These fifteen years mean a lot for mechanics in Poland. Continuing the tradition of Professor Maksymilian Tytus Huber's research, considerable development of the mechanical sciences has been achieved in this country mostly due to the knowledge, vision and persistence of Professors Wit old Nowacki and Waclaw Olszak, eminent Members of our Academy. The Institute of Fundamental Technological Research was established, competent research groups grew, matured and contri buted to thermo-elasticity, plasticity, general theory of constitutive equations, and to structural mechanics-just to mention a few do mains. Mechanics is now penetrating into the technology of this country at an accelerating pace. The optimization in mechanics has a tradition in Poland. In 1936 Professor Zbigniew Wasiutynski formulated the optimality criterion for mean stiffness design using an elastic energy concept. Further work in this field has been done since, mostly in the last ten years. On behalf of the Committee for Mechanics of the Polish Academy of Sciences I wish to thank the IUTA1V[ Bureau for the decision to hold in Warsaw the Symposium the present volume contains the contribu tions to.
Advances in Structural Optimization
Author: J. Herskovits
Publisher: Springer Science & Business Media
ISBN: 9401104530
Category : Technology & Engineering
Languages : en
Pages : 508
Book Description
Advances in Structural Optimization presents the techniques for a wide set of applications, ranging from the problems of size and shape optimization (historically the first to be studied) to topology and material optimization. Structural models are considered that use both discrete and finite elements. Structural materials can be classical or new. Emerging methods are also addressed, such as automatic differentiation, intelligent structures optimization, integration of structural optimization in concurrent engineering environments, and multidisciplinary optimization. For researchers and designers in industries such as aerospace, automotive, mechanical, civil, nuclear, naval and offshore. A reference book for advanced undergraduate or graduate courses on structural optimization and optimum design.
Publisher: Springer Science & Business Media
ISBN: 9401104530
Category : Technology & Engineering
Languages : en
Pages : 508
Book Description
Advances in Structural Optimization presents the techniques for a wide set of applications, ranging from the problems of size and shape optimization (historically the first to be studied) to topology and material optimization. Structural models are considered that use both discrete and finite elements. Structural materials can be classical or new. Emerging methods are also addressed, such as automatic differentiation, intelligent structures optimization, integration of structural optimization in concurrent engineering environments, and multidisciplinary optimization. For researchers and designers in industries such as aerospace, automotive, mechanical, civil, nuclear, naval and offshore. A reference book for advanced undergraduate or graduate courses on structural optimization and optimum design.
Structural Design via Optimality Criteria
Author: George I. N. Rozvany
Publisher: Springer Science & Business Media
ISBN: 9400911610
Category : Technology & Engineering
Languages : en
Pages : 488
Book Description
"During the last two decades, research on structural optimization became increasingly concerned with two aspects: the application of general numeri cal methods of optimization to structural design of complex real structures, and the analytical derivation of necessary and sufficient conditions for the optimality of broad classes of comparatively simple and more or less ideal ized structures. Both kinds of research are important: the first for obvious reasons; the second, because it furnishes information that is useful in testing the validity, accuracy and convergence of numerical methods and in assess ing the efficiency of practical designs. {raquo} (Prager and Rozvany, 1977a) The unexpected death of William Prager in March 1980 marked, in a sense, the end of an era in structural mechanics, but his legacy of ideas will re main a source of inspiration for generations of researchers to come. Since his nominal retirement in the early seventies, Professor and Mrs. Prager lived in Savognin, an isolated alpine village and ski resort surrounded by some of Switzerland's highest mountains. It was there that the author's close as sociation with Prager developed through annual pilgrimages from Australia and lengthy discussions which pivoted on Prager's favourite topic of struc tural optimization. These exchanges took place in the picturesque setting of Graubunden, on the terrace of an alpine restaurant overlooking snow-capped peaks, on ski-lifts or mountain walks, or during evening meals in the cosy hotels of Savognin, Parsonz and Riom.
Publisher: Springer Science & Business Media
ISBN: 9400911610
Category : Technology & Engineering
Languages : en
Pages : 488
Book Description
"During the last two decades, research on structural optimization became increasingly concerned with two aspects: the application of general numeri cal methods of optimization to structural design of complex real structures, and the analytical derivation of necessary and sufficient conditions for the optimality of broad classes of comparatively simple and more or less ideal ized structures. Both kinds of research are important: the first for obvious reasons; the second, because it furnishes information that is useful in testing the validity, accuracy and convergence of numerical methods and in assess ing the efficiency of practical designs. {raquo} (Prager and Rozvany, 1977a) The unexpected death of William Prager in March 1980 marked, in a sense, the end of an era in structural mechanics, but his legacy of ideas will re main a source of inspiration for generations of researchers to come. Since his nominal retirement in the early seventies, Professor and Mrs. Prager lived in Savognin, an isolated alpine village and ski resort surrounded by some of Switzerland's highest mountains. It was there that the author's close as sociation with Prager developed through annual pilgrimages from Australia and lengthy discussions which pivoted on Prager's favourite topic of struc tural optimization. These exchanges took place in the picturesque setting of Graubunden, on the terrace of an alpine restaurant overlooking snow-capped peaks, on ski-lifts or mountain walks, or during evening meals in the cosy hotels of Savognin, Parsonz and Riom.