Author: René L. Schilling
Publisher: Cambridge University Press
ISBN: 1316620247
Category : Mathematics
Languages : en
Pages : 497
Book Description
A concise, elementary introduction to measure and integration theory, requiring few prerequisites as theory is developed quickly and simply.
Measures, Integrals and Martingales
Author: René L. Schilling
Publisher: Cambridge University Press
ISBN: 1316620247
Category : Mathematics
Languages : en
Pages : 497
Book Description
A concise, elementary introduction to measure and integration theory, requiring few prerequisites as theory is developed quickly and simply.
Publisher: Cambridge University Press
ISBN: 1316620247
Category : Mathematics
Languages : en
Pages : 497
Book Description
A concise, elementary introduction to measure and integration theory, requiring few prerequisites as theory is developed quickly and simply.
Measures, Integrals and Martingales
Author: René L. Schilling
Publisher: Cambridge University Press
ISBN: 9780521850155
Category : Mathematics
Languages : en
Pages : 404
Book Description
This book, first published in 2005, introduces measure and integration theory as it is needed in many parts of analysis and probability.
Publisher: Cambridge University Press
ISBN: 9780521850155
Category : Mathematics
Languages : en
Pages : 404
Book Description
This book, first published in 2005, introduces measure and integration theory as it is needed in many parts of analysis and probability.
Counterexamples in Measure and Integration
Author: René L. Schilling
Publisher: Cambridge University Press
ISBN: 1009020390
Category : Mathematics
Languages : en
Pages : 431
Book Description
Often it is more instructive to know 'what can go wrong' and to understand 'why a result fails' than to plod through yet another piece of theory. In this text, the authors gather more than 300 counterexamples - some of them both surprising and amusing - showing the limitations, hidden traps and pitfalls of measure and integration. Many examples are put into context, explaining relevant parts of the theory, and pointing out further reading. The text starts with a self-contained, non-technical overview on the fundamentals of measure and integration. A companion to the successful undergraduate textbook Measures, Integrals and Martingales, it is accessible to advanced undergraduate students, requiring only modest prerequisites. More specialized concepts are summarized at the beginning of each chapter, allowing for self-study as well as supplementary reading for any course covering measures and integrals. For researchers, it provides ample examples and warnings as to the limitations of general measure theory. This book forms a sister volume to René Schilling's other book Measures, Integrals and Martingales (www.cambridge.org/9781316620243).
Publisher: Cambridge University Press
ISBN: 1009020390
Category : Mathematics
Languages : en
Pages : 431
Book Description
Often it is more instructive to know 'what can go wrong' and to understand 'why a result fails' than to plod through yet another piece of theory. In this text, the authors gather more than 300 counterexamples - some of them both surprising and amusing - showing the limitations, hidden traps and pitfalls of measure and integration. Many examples are put into context, explaining relevant parts of the theory, and pointing out further reading. The text starts with a self-contained, non-technical overview on the fundamentals of measure and integration. A companion to the successful undergraduate textbook Measures, Integrals and Martingales, it is accessible to advanced undergraduate students, requiring only modest prerequisites. More specialized concepts are summarized at the beginning of each chapter, allowing for self-study as well as supplementary reading for any course covering measures and integrals. For researchers, it provides ample examples and warnings as to the limitations of general measure theory. This book forms a sister volume to René Schilling's other book Measures, Integrals and Martingales (www.cambridge.org/9781316620243).
Measure, Integral and Probability
Author: Marek Capinski
Publisher: Springer Science & Business Media
ISBN: 1447136314
Category : Mathematics
Languages : en
Pages : 229
Book Description
This very well written and accessible book emphasizes the reasons for studying measure theory, which is the foundation of much of probability. By focusing on measure, many illustrative examples and applications, including a thorough discussion of standard probability distributions and densities, are opened. The book also includes many problems and their fully worked solutions.
Publisher: Springer Science & Business Media
ISBN: 1447136314
Category : Mathematics
Languages : en
Pages : 229
Book Description
This very well written and accessible book emphasizes the reasons for studying measure theory, which is the foundation of much of probability. By focusing on measure, many illustrative examples and applications, including a thorough discussion of standard probability distributions and densities, are opened. The book also includes many problems and their fully worked solutions.
Measure, Integration & Real Analysis
Author: Sheldon Axler
Publisher: Springer Nature
ISBN: 3030331431
Category : Mathematics
Languages : en
Pages : 430
Book Description
This open access textbook welcomes students into the fundamental theory of measure, integration, and real analysis. Focusing on an accessible approach, Axler lays the foundations for further study by promoting a deep understanding of key results. Content is carefully curated to suit a single course, or two-semester sequence of courses, creating a versatile entry point for graduate studies in all areas of pure and applied mathematics. Motivated by a brief review of Riemann integration and its deficiencies, the text begins by immersing students in the concepts of measure and integration. Lebesgue measure and abstract measures are developed together, with each providing key insight into the main ideas of the other approach. Lebesgue integration links into results such as the Lebesgue Differentiation Theorem. The development of products of abstract measures leads to Lebesgue measure on Rn. Chapters on Banach spaces, Lp spaces, and Hilbert spaces showcase major results such as the Hahn–Banach Theorem, Hölder’s Inequality, and the Riesz Representation Theorem. An in-depth study of linear maps on Hilbert spaces culminates in the Spectral Theorem and Singular Value Decomposition for compact operators, with an optional interlude in real and complex measures. Building on the Hilbert space material, a chapter on Fourier analysis provides an invaluable introduction to Fourier series and the Fourier transform. The final chapter offers a taste of probability. Extensively class tested at multiple universities and written by an award-winning mathematical expositor, Measure, Integration & Real Analysis is an ideal resource for students at the start of their journey into graduate mathematics. A prerequisite of elementary undergraduate real analysis is assumed; students and instructors looking to reinforce these ideas will appreciate the electronic Supplement for Measure, Integration & Real Analysis that is freely available online. For errata and updates, visit https://measure.axler.net/
Publisher: Springer Nature
ISBN: 3030331431
Category : Mathematics
Languages : en
Pages : 430
Book Description
This open access textbook welcomes students into the fundamental theory of measure, integration, and real analysis. Focusing on an accessible approach, Axler lays the foundations for further study by promoting a deep understanding of key results. Content is carefully curated to suit a single course, or two-semester sequence of courses, creating a versatile entry point for graduate studies in all areas of pure and applied mathematics. Motivated by a brief review of Riemann integration and its deficiencies, the text begins by immersing students in the concepts of measure and integration. Lebesgue measure and abstract measures are developed together, with each providing key insight into the main ideas of the other approach. Lebesgue integration links into results such as the Lebesgue Differentiation Theorem. The development of products of abstract measures leads to Lebesgue measure on Rn. Chapters on Banach spaces, Lp spaces, and Hilbert spaces showcase major results such as the Hahn–Banach Theorem, Hölder’s Inequality, and the Riesz Representation Theorem. An in-depth study of linear maps on Hilbert spaces culminates in the Spectral Theorem and Singular Value Decomposition for compact operators, with an optional interlude in real and complex measures. Building on the Hilbert space material, a chapter on Fourier analysis provides an invaluable introduction to Fourier series and the Fourier transform. The final chapter offers a taste of probability. Extensively class tested at multiple universities and written by an award-winning mathematical expositor, Measure, Integration & Real Analysis is an ideal resource for students at the start of their journey into graduate mathematics. A prerequisite of elementary undergraduate real analysis is assumed; students and instructors looking to reinforce these ideas will appreciate the electronic Supplement for Measure, Integration & Real Analysis that is freely available online. For errata and updates, visit https://measure.axler.net/
Measure, Integral, Probability & Processes
Author: René L Schilling
Publisher:
ISBN:
Category :
Languages : en
Pages : 450
Book Description
In these lecture notes we give a self-contained and concise introduction to the essentials of modern probability theory. The material covers all concepts and techniques usually taught at BSc and first-year graduate level probability courses: Measure & integration theory, elementary probability theory, further probability, classic limit theorems, discrete-time and continuous-time martingales, Poisson processes, random walks & Markov chains and, finally, first steps towards Brownian motion. The text can serve as a course companion, for self study or as a reference text. Concepts, which will be useful for later chapters and further studies are introduced early on. The material is organized and presented in a way that will enable the readers to continue their study with any advanced text in probability theory, stochastic processes or stochastic analysis. Much emphasis is put on being reader-friendly and useful, giving a direct and quick start into a fascinating mathematical topic.
Publisher:
ISBN:
Category :
Languages : en
Pages : 450
Book Description
In these lecture notes we give a self-contained and concise introduction to the essentials of modern probability theory. The material covers all concepts and techniques usually taught at BSc and first-year graduate level probability courses: Measure & integration theory, elementary probability theory, further probability, classic limit theorems, discrete-time and continuous-time martingales, Poisson processes, random walks & Markov chains and, finally, first steps towards Brownian motion. The text can serve as a course companion, for self study or as a reference text. Concepts, which will be useful for later chapters and further studies are introduced early on. The material is organized and presented in a way that will enable the readers to continue their study with any advanced text in probability theory, stochastic processes or stochastic analysis. Much emphasis is put on being reader-friendly and useful, giving a direct and quick start into a fascinating mathematical topic.
Real Analysis: Theory Of Measure And Integration (3rd Edition)
Author: James J Yeh
Publisher: World Scientific Publishing Company
ISBN: 9814578568
Category : Mathematics
Languages : en
Pages : 840
Book Description
This book presents a unified treatise of the theory of measure and integration. In the setting of a general measure space, every concept is defined precisely and every theorem is presented with a clear and complete proof with all the relevant details. Counter-examples are provided to show that certain conditions in the hypothesis of a theorem cannot be simply dropped. The dependence of a theorem on earlier theorems is explicitly indicated in the proof, not only to facilitate reading but also to delineate the structure of the theory. The precision and clarity of presentation make the book an ideal textbook for a graduate course in real analysis while the wealth of topics treated also make the book a valuable reference work for mathematicians.The book is also very helpful to graduate students in statistics and electrical engineering, two disciplines that apply measure theory.
Publisher: World Scientific Publishing Company
ISBN: 9814578568
Category : Mathematics
Languages : en
Pages : 840
Book Description
This book presents a unified treatise of the theory of measure and integration. In the setting of a general measure space, every concept is defined precisely and every theorem is presented with a clear and complete proof with all the relevant details. Counter-examples are provided to show that certain conditions in the hypothesis of a theorem cannot be simply dropped. The dependence of a theorem on earlier theorems is explicitly indicated in the proof, not only to facilitate reading but also to delineate the structure of the theory. The precision and clarity of presentation make the book an ideal textbook for a graduate course in real analysis while the wealth of topics treated also make the book a valuable reference work for mathematicians.The book is also very helpful to graduate students in statistics and electrical engineering, two disciplines that apply measure theory.
Brownian Motion, Martingales, and Stochastic Calculus
Author: Jean-François Le Gall
Publisher: Springer
ISBN: 3319310895
Category : Mathematics
Languages : en
Pages : 282
Book Description
This book offers a rigorous and self-contained presentation of stochastic integration and stochastic calculus within the general framework of continuous semimartingales. The main tools of stochastic calculus, including Itô’s formula, the optional stopping theorem and Girsanov’s theorem, are treated in detail alongside many illustrative examples. The book also contains an introduction to Markov processes, with applications to solutions of stochastic differential equations and to connections between Brownian motion and partial differential equations. The theory of local times of semimartingales is discussed in the last chapter. Since its invention by Itô, stochastic calculus has proven to be one of the most important techniques of modern probability theory, and has been used in the most recent theoretical advances as well as in applications to other fields such as mathematical finance. Brownian Motion, Martingales, and Stochastic Calculus provides a strong theoretical background to the reader interested in such developments. Beginning graduate or advanced undergraduate students will benefit from this detailed approach to an essential area of probability theory. The emphasis is on concise and efficient presentation, without any concession to mathematical rigor. The material has been taught by the author for several years in graduate courses at two of the most prestigious French universities. The fact that proofs are given with full details makes the book particularly suitable for self-study. The numerous exercises help the reader to get acquainted with the tools of stochastic calculus.
Publisher: Springer
ISBN: 3319310895
Category : Mathematics
Languages : en
Pages : 282
Book Description
This book offers a rigorous and self-contained presentation of stochastic integration and stochastic calculus within the general framework of continuous semimartingales. The main tools of stochastic calculus, including Itô’s formula, the optional stopping theorem and Girsanov’s theorem, are treated in detail alongside many illustrative examples. The book also contains an introduction to Markov processes, with applications to solutions of stochastic differential equations and to connections between Brownian motion and partial differential equations. The theory of local times of semimartingales is discussed in the last chapter. Since its invention by Itô, stochastic calculus has proven to be one of the most important techniques of modern probability theory, and has been used in the most recent theoretical advances as well as in applications to other fields such as mathematical finance. Brownian Motion, Martingales, and Stochastic Calculus provides a strong theoretical background to the reader interested in such developments. Beginning graduate or advanced undergraduate students will benefit from this detailed approach to an essential area of probability theory. The emphasis is on concise and efficient presentation, without any concession to mathematical rigor. The material has been taught by the author for several years in graduate courses at two of the most prestigious French universities. The fact that proofs are given with full details makes the book particularly suitable for self-study. The numerous exercises help the reader to get acquainted with the tools of stochastic calculus.
A User's Guide to Measure Theoretic Probability
Author: David Pollard
Publisher: Cambridge University Press
ISBN: 9780521002899
Category : Mathematics
Languages : en
Pages : 372
Book Description
This book grew from a one-semester course offered for many years to a mixed audience of graduate and undergraduate students who have not had the luxury of taking a course in measure theory. The core of the book covers the basic topics of independence, conditioning, martingales, convergence in distribution, and Fourier transforms. In addition there are numerous sections treating topics traditionally thought of as more advanced, such as coupling and the KMT strong approximation, option pricing via the equivalent martingale measure, and the isoperimetric inequality for Gaussian processes. The book is not just a presentation of mathematical theory, but is also a discussion of why that theory takes its current form. It will be a secure starting point for anyone who needs to invoke rigorous probabilistic arguments and understand what they mean.
Publisher: Cambridge University Press
ISBN: 9780521002899
Category : Mathematics
Languages : en
Pages : 372
Book Description
This book grew from a one-semester course offered for many years to a mixed audience of graduate and undergraduate students who have not had the luxury of taking a course in measure theory. The core of the book covers the basic topics of independence, conditioning, martingales, convergence in distribution, and Fourier transforms. In addition there are numerous sections treating topics traditionally thought of as more advanced, such as coupling and the KMT strong approximation, option pricing via the equivalent martingale measure, and the isoperimetric inequality for Gaussian processes. The book is not just a presentation of mathematical theory, but is also a discussion of why that theory takes its current form. It will be a secure starting point for anyone who needs to invoke rigorous probabilistic arguments and understand what they mean.
A Basic Course in Measure and Probability
Author: Ross Leadbetter
Publisher: Cambridge University Press
ISBN: 1107020409
Category : Mathematics
Languages : en
Pages : 375
Book Description
A concise introduction covering all of the measure theory and probability most useful for statisticians.
Publisher: Cambridge University Press
ISBN: 1107020409
Category : Mathematics
Languages : en
Pages : 375
Book Description
A concise introduction covering all of the measure theory and probability most useful for statisticians.