Author: David Benjamin Helmer
Publisher: Stanford University
ISBN:
Category :
Languages : en
Pages : 212
Book Description
A series of measurements were taken of the shock-boundary layer interaction (SBLI) in a Mach 2.1 continuously operated wind tunnel. The SBLI was generated by a small (~1.1mm tall) 20° wedge located on the top wall, and data were taken both in the region near the compression wedge and in the area where this shock impinged on the bottom wall. PIV was the primary measurement tool in both locations, though pressure data were also acquired near the compression wedge. Data were acquired at 4 spanwise locations to study the three-dimensionality of the flow. Both interactions were found to be highly 3-D, with a stronger interaction observed near the channel centerline. Evidence of a corner vortical structure in the compression corner was observed, and substantiated by CFD. Intermittent flow reversal was seen in the reflected shock interaction near the channel centerline, though not in the corners. The data suggest the presence of vortical structures generated near the channel centerline and pushed towards the sidewalls. Following the characterization of the base case, a Monte Carlo experiment was performed in which geometric perturbations were installed along the bottom wall of the wind tunnel and their effect on the flow was studied. The Monte Carlo device was designed and installed at the location predicted to be most sensitive by CFD. The majority of the locations initially tested displayed minimal sensitivity, with only the largest and most upstream quasi-2D cases showing significant effects on the flow at the corner. The perturbation device was redesigned and moved upstream, and additional quasi-2D cases were tested. It was found that some configurations accelerated the flow and strengthened the primary shock, while others slowed the flow and weakened the shock. Overall, the flow was observed to be very sensitive to some perturbations, but only to those located within a limited range of streamwise positions, and with a wide variety of system responses possible.
Measurements of a Three-dimensional Shock-boundary Layer Interaction
Author: David Benjamin Helmer
Publisher: Stanford University
ISBN:
Category :
Languages : en
Pages : 212
Book Description
A series of measurements were taken of the shock-boundary layer interaction (SBLI) in a Mach 2.1 continuously operated wind tunnel. The SBLI was generated by a small (~1.1mm tall) 20° wedge located on the top wall, and data were taken both in the region near the compression wedge and in the area where this shock impinged on the bottom wall. PIV was the primary measurement tool in both locations, though pressure data were also acquired near the compression wedge. Data were acquired at 4 spanwise locations to study the three-dimensionality of the flow. Both interactions were found to be highly 3-D, with a stronger interaction observed near the channel centerline. Evidence of a corner vortical structure in the compression corner was observed, and substantiated by CFD. Intermittent flow reversal was seen in the reflected shock interaction near the channel centerline, though not in the corners. The data suggest the presence of vortical structures generated near the channel centerline and pushed towards the sidewalls. Following the characterization of the base case, a Monte Carlo experiment was performed in which geometric perturbations were installed along the bottom wall of the wind tunnel and their effect on the flow was studied. The Monte Carlo device was designed and installed at the location predicted to be most sensitive by CFD. The majority of the locations initially tested displayed minimal sensitivity, with only the largest and most upstream quasi-2D cases showing significant effects on the flow at the corner. The perturbation device was redesigned and moved upstream, and additional quasi-2D cases were tested. It was found that some configurations accelerated the flow and strengthened the primary shock, while others slowed the flow and weakened the shock. Overall, the flow was observed to be very sensitive to some perturbations, but only to those located within a limited range of streamwise positions, and with a wide variety of system responses possible.
Publisher: Stanford University
ISBN:
Category :
Languages : en
Pages : 212
Book Description
A series of measurements were taken of the shock-boundary layer interaction (SBLI) in a Mach 2.1 continuously operated wind tunnel. The SBLI was generated by a small (~1.1mm tall) 20° wedge located on the top wall, and data were taken both in the region near the compression wedge and in the area where this shock impinged on the bottom wall. PIV was the primary measurement tool in both locations, though pressure data were also acquired near the compression wedge. Data were acquired at 4 spanwise locations to study the three-dimensionality of the flow. Both interactions were found to be highly 3-D, with a stronger interaction observed near the channel centerline. Evidence of a corner vortical structure in the compression corner was observed, and substantiated by CFD. Intermittent flow reversal was seen in the reflected shock interaction near the channel centerline, though not in the corners. The data suggest the presence of vortical structures generated near the channel centerline and pushed towards the sidewalls. Following the characterization of the base case, a Monte Carlo experiment was performed in which geometric perturbations were installed along the bottom wall of the wind tunnel and their effect on the flow was studied. The Monte Carlo device was designed and installed at the location predicted to be most sensitive by CFD. The majority of the locations initially tested displayed minimal sensitivity, with only the largest and most upstream quasi-2D cases showing significant effects on the flow at the corner. The perturbation device was redesigned and moved upstream, and additional quasi-2D cases were tested. It was found that some configurations accelerated the flow and strengthened the primary shock, while others slowed the flow and weakened the shock. Overall, the flow was observed to be very sensitive to some perturbations, but only to those located within a limited range of streamwise positions, and with a wide variety of system responses possible.
Shock Wave-Boundary-Layer Interactions
Author: Holger Babinsky
Publisher: Cambridge University Press
ISBN: 1139498649
Category : Technology & Engineering
Languages : en
Pages : 481
Book Description
Shock wave-boundary-layer interaction (SBLI) is a fundamental phenomenon in gas dynamics that is observed in many practical situations, ranging from transonic aircraft wings to hypersonic vehicles and engines. SBLIs have the potential to pose serious problems in a flowfield; hence they often prove to be a critical - or even design limiting - issue for many aerospace applications. This is the first book devoted solely to a comprehensive, state-of-the-art explanation of this phenomenon. It includes a description of the basic fluid mechanics of SBLIs plus contributions from leading international experts who share their insight into their physics and the impact they have in practical flow situations. This book is for practitioners and graduate students in aerodynamics who wish to familiarize themselves with all aspects of SBLI flows. It is a valuable resource for specialists because it compiles experimental, computational and theoretical knowledge in one place.
Publisher: Cambridge University Press
ISBN: 1139498649
Category : Technology & Engineering
Languages : en
Pages : 481
Book Description
Shock wave-boundary-layer interaction (SBLI) is a fundamental phenomenon in gas dynamics that is observed in many practical situations, ranging from transonic aircraft wings to hypersonic vehicles and engines. SBLIs have the potential to pose serious problems in a flowfield; hence they often prove to be a critical - or even design limiting - issue for many aerospace applications. This is the first book devoted solely to a comprehensive, state-of-the-art explanation of this phenomenon. It includes a description of the basic fluid mechanics of SBLIs plus contributions from leading international experts who share their insight into their physics and the impact they have in practical flow situations. This book is for practitioners and graduate students in aerodynamics who wish to familiarize themselves with all aspects of SBLI flows. It is a valuable resource for specialists because it compiles experimental, computational and theoretical knowledge in one place.
Scientific and Technical Aerospace Reports
Computation of Three-dimensional Shock Wave and Boundary-layer Interactions
Flow Visualization
Author: Wolfgang Merzkirch
Publisher: Academic Press
ISBN: 9780124913516
Category : Science
Languages : en
Pages : 280
Book Description
Publisher: Academic Press
ISBN: 9780124913516
Category : Science
Languages : en
Pages : 280
Book Description
Monthly Catalogue, United States Public Documents
Author:
Publisher:
ISBN:
Category : Government publications
Languages : en
Pages : 1638
Book Description
Publisher:
ISBN:
Category : Government publications
Languages : en
Pages : 1638
Book Description
Monthly Catalog of United States Government Publications
Author:
Publisher:
ISBN:
Category : Government publications
Languages : en
Pages : 1632
Book Description
Publisher:
ISBN:
Category : Government publications
Languages : en
Pages : 1632
Book Description
Applied Mechanics Reviews
AIAA 22nd Fluid Dynamics, Plasma Dynamics & Lasers Conference: 91-1752 - 91-1779
Turbulent Shear Layers in Supersonic Flow
Author: Alexander J. Smits
Publisher: Springer Science & Business Media
ISBN: 0387263055
Category : Science
Languages : en
Pages : 418
Book Description
A good understanding of turbulent compressible flows is essential to the design and operation of high-speed vehicles. Such flows occur, for example, in the external flow over the surfaces of supersonic aircraft, and in the internal flow through the engines. Our ability to predict the aerodynamic lift, drag, propulsion and maneuverability of high-speed vehicles is crucially dependent on our knowledge of turbulent shear layers, and our understanding of their behavior in the presence of shock waves and regions of changing pressure. Turbulent Shear Layers in Supersonic Flow provides a comprehensive introduction to the field, and helps provide a basis for future work in this area. Wherever possible we use the available experimental work, and the results from numerical simulations to illustrate and develop a physical understanding of turbulent compressible flows.
Publisher: Springer Science & Business Media
ISBN: 0387263055
Category : Science
Languages : en
Pages : 418
Book Description
A good understanding of turbulent compressible flows is essential to the design and operation of high-speed vehicles. Such flows occur, for example, in the external flow over the surfaces of supersonic aircraft, and in the internal flow through the engines. Our ability to predict the aerodynamic lift, drag, propulsion and maneuverability of high-speed vehicles is crucially dependent on our knowledge of turbulent shear layers, and our understanding of their behavior in the presence of shock waves and regions of changing pressure. Turbulent Shear Layers in Supersonic Flow provides a comprehensive introduction to the field, and helps provide a basis for future work in this area. Wherever possible we use the available experimental work, and the results from numerical simulations to illustrate and develop a physical understanding of turbulent compressible flows.