Measurement of the High-Energy Neutron Flux Above and Below Ground PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Measurement of the High-Energy Neutron Flux Above and Below Ground PDF full book. Access full book title Measurement of the High-Energy Neutron Flux Above and Below Ground by Caleb Daniel Roecker. Download full books in PDF and EPUB format.

Measurement of the High-Energy Neutron Flux Above and Below Ground

Measurement of the High-Energy Neutron Flux Above and Below Ground PDF Author: Caleb Daniel Roecker
Publisher:
ISBN:
Category :
Languages : en
Pages : 188

Book Description
High-energy neutrons produce secondary particles through spallation, which create a ubiquitous and prominent background in a wide range of rare-event particle and nuclear physics experiments. Above ground, the high-energy neutron energy-dependent flux has been measured, but with significantly varying results. Below ground, only two previous measurements have succeeded in observing these neutrons, and communicated their results in a fashion useful to others. In a separate effort, a model of the neutron energy-dependent flux was previously developed for measurements below 1000 m.w.e. No comparisons to this model and the measured neutron flux have been performed. In an effort to provide new and independent measurements above and below ground, the Multiplicity and Recoil Spectrometer (MARS) was designed, constructed, and deployed to the Kimballton Underground Research Facility (KURF). MARS is a transportable 1 m^3 detector composed of plastic scintillator Gd based neutron detectors, and a lead spallation target. MARS uses neutron spallation in the lead to transform an incident high-energy neutron into many lower energy secondary neutrons. By recording the secondary neutron multiplicity over many incident neutron events, the incident neutron energy spectrum can be inferred. This multiplicity method employed by MARS represents a new approach in high-energy neutron spectroscopy, which requires a new algorithm to correct the observed signal into a neutron spectrum. A recently developed Markov Chain Monte Carlo (MCMC) inversion algorithm, with a calibrated Monte Carlo model of MARS, is used to perform this inversion. Using this new multiplicity method, MARS performed measurements at the surface of Earth and at depths of 377 meters water equivalent (m.w.e.), 540 m.w.e., and 1450 m.w.e. Due to the transportable nature of MARS, minimal detector related systematic bias exists between these measurements. The minimal bias between these measurements at multiple depths will allow for the creation of a depth-dependent predictive model of the high-energy neutron energy-dependent flux. This dissertation introduces the new multiplicity measurement approach, the MCMC inversion algorithm, the Monte Carlo model and associated calibrations, and presents results from the four measurements. Above ground, the MARS measurement results agree with most of the previous measurements in the energy range between 90 MeV and 250 MeV. Above 250 MeV the MARS results report slightly lower flux than most of the previous measurements, but are still within the spread of all previous measurements. Below ground, no direct comparison can be made to the MARS results at 377 m.w.e. The MARS result at 540 m.w.e. appears to be in rough agreement with one of the previous below ground measurements, at the one measured energy where the results overlap. At 1450 m.w.e., the MARS results shows reasonable agreement with previous simulation predictions. The rough agreement of the MARS results, at all relevant locations, with previous measurements and existing simulation where applicable, provide confidence that all MARS measurements have produced the correct high-energy neutron energy-dependent flux. Above ground, the new independent results strengthen the results of previous measurements. Below ground, the three measurements provide consistent results with minimal detector related bias between measurements due to the transportable nature of MARS, that will be used to produce a depth-dependent model of the high-energy neutron energy-dependent flux. For the rare-event particle and nuclear physics experiments affected by high-energy neutron backgrounds, this model will allow for the prediction of the high-energy neutron background at different measurement locations, a more robust instrumental design, and the ability to estimate the high-energy neutron background contribution in their final measured data; the confidence in the results of these experiments will be improved.

Measurement of the High-Energy Neutron Flux Above and Below Ground

Measurement of the High-Energy Neutron Flux Above and Below Ground PDF Author: Caleb Daniel Roecker
Publisher:
ISBN:
Category :
Languages : en
Pages : 188

Book Description
High-energy neutrons produce secondary particles through spallation, which create a ubiquitous and prominent background in a wide range of rare-event particle and nuclear physics experiments. Above ground, the high-energy neutron energy-dependent flux has been measured, but with significantly varying results. Below ground, only two previous measurements have succeeded in observing these neutrons, and communicated their results in a fashion useful to others. In a separate effort, a model of the neutron energy-dependent flux was previously developed for measurements below 1000 m.w.e. No comparisons to this model and the measured neutron flux have been performed. In an effort to provide new and independent measurements above and below ground, the Multiplicity and Recoil Spectrometer (MARS) was designed, constructed, and deployed to the Kimballton Underground Research Facility (KURF). MARS is a transportable 1 m^3 detector composed of plastic scintillator Gd based neutron detectors, and a lead spallation target. MARS uses neutron spallation in the lead to transform an incident high-energy neutron into many lower energy secondary neutrons. By recording the secondary neutron multiplicity over many incident neutron events, the incident neutron energy spectrum can be inferred. This multiplicity method employed by MARS represents a new approach in high-energy neutron spectroscopy, which requires a new algorithm to correct the observed signal into a neutron spectrum. A recently developed Markov Chain Monte Carlo (MCMC) inversion algorithm, with a calibrated Monte Carlo model of MARS, is used to perform this inversion. Using this new multiplicity method, MARS performed measurements at the surface of Earth and at depths of 377 meters water equivalent (m.w.e.), 540 m.w.e., and 1450 m.w.e. Due to the transportable nature of MARS, minimal detector related systematic bias exists between these measurements. The minimal bias between these measurements at multiple depths will allow for the creation of a depth-dependent predictive model of the high-energy neutron energy-dependent flux. This dissertation introduces the new multiplicity measurement approach, the MCMC inversion algorithm, the Monte Carlo model and associated calibrations, and presents results from the four measurements. Above ground, the MARS measurement results agree with most of the previous measurements in the energy range between 90 MeV and 250 MeV. Above 250 MeV the MARS results report slightly lower flux than most of the previous measurements, but are still within the spread of all previous measurements. Below ground, no direct comparison can be made to the MARS results at 377 m.w.e. The MARS result at 540 m.w.e. appears to be in rough agreement with one of the previous below ground measurements, at the one measured energy where the results overlap. At 1450 m.w.e., the MARS results shows reasonable agreement with previous simulation predictions. The rough agreement of the MARS results, at all relevant locations, with previous measurements and existing simulation where applicable, provide confidence that all MARS measurements have produced the correct high-energy neutron energy-dependent flux. Above ground, the new independent results strengthen the results of previous measurements. Below ground, the three measurements provide consistent results with minimal detector related bias between measurements due to the transportable nature of MARS, that will be used to produce a depth-dependent model of the high-energy neutron energy-dependent flux. For the rare-event particle and nuclear physics experiments affected by high-energy neutron backgrounds, this model will allow for the prediction of the high-energy neutron background at different measurement locations, a more robust instrumental design, and the ability to estimate the high-energy neutron background contribution in their final measured data; the confidence in the results of these experiments will be improved.

Measurement of Neutron Flux and Spectra for Physical and Biological Applications

Measurement of Neutron Flux and Spectra for Physical and Biological Applications PDF Author: National Committee on Radiation Protection and Measurements (U.S.)
Publisher:
ISBN:
Category : Neutrons
Languages : en
Pages : 104

Book Description


Measurement of Neutron Flux and Spectra for Physical and Biological Applications

Measurement of Neutron Flux and Spectra for Physical and Biological Applications PDF Author: National Committee on Radiation Protection and Measurements (U.S.)
Publisher:
ISBN:
Category : Neutron flux
Languages : en
Pages : 104

Book Description


Measurement of Neutron and Muon Fluxes 100~m Underground with the SciBath Detector

Measurement of Neutron and Muon Fluxes 100~m Underground with the SciBath Detector PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 171

Book Description
The SciBath detector is an 80 liter liquid scintillator detector read out by a three dimensional grid of 768 wavelength-shifting fibers. Initially conceived as a fine-grained charged particle detector for neutrino studies that could image charged particle tracks in all directions, it is also sensitive to fast neutrons (15-200 MeV). In fall of 2011 the apparatus performed a three month run to measure cosmic-induced muons and neutrons 100~meters underground in the FNAL MINOS near-detector area. Data from this run has been analyzed and resulted in measurements of the cosmic muon flux as \num{0.80\pm0.04}~\si{\m^{-2}\s^{-1}}, the cosmogenic fast neutron flux as \num{1.5\pm1.4e-2}~\si{\m^{-2}\s^{-1}}, and the neutron production rate from muon spallation in liquid scintillator as \num{3.8\pm3.2e-4}~$n/\mu$~\si{(\g\per\cm^2)^{-1}}. Additionally, the cosmic muon angular distribution and neutron energy distribution have been measured. These results can be extrapolated to future measurements of fast-neutron backgrounds at other underground facilities. This thesis presents a summary of the physics relevant to underground muons and fast neutrons, the SciBath detector, the analysis methodology that was used for the results presented, and comparisons between our results and those of other experiments and simulations.

Neutron Flux and Spectra Measurements in the Void Tank of the TRIGA Mark-F Reactor

Neutron Flux and Spectra Measurements in the Void Tank of the TRIGA Mark-F Reactor PDF Author: K. C. Humpherys
Publisher:
ISBN:
Category : Neutron flux
Languages : en
Pages : 22

Book Description


Status of the Dosimetry for the Radiation Effects Research Foundation (DS86)

Status of the Dosimetry for the Radiation Effects Research Foundation (DS86) PDF Author: National Research Council
Publisher: National Academies Press
ISBN: 0309075599
Category : Science
Languages : en
Pages : 211

Book Description
The Committee on Dosimetry for the Radiation Effects Research Foundation (RERF) was set up more than a decade ago at the request of the U.S. Department of Energy. It was charged with monitoring work and experimental results related to the Dosimetry System 1986 (DS86) used by RERF to reconstruct the radiation doses to the survivors in Hiroshima and Nagasaki. At the time it was established, DS86 was believed to be the best available dosimetric system for RERF, but questions have persisted about some features, especially the estimates of neutrons resulting from the Hiroshima bomb. This book describes the current situation, the gamma-ray dosimetry, and such dosimetry issues as thermal-neutron discrepancies between measurement and calculation at various distances in Hiroshima and Nagasaki. It recommends approaches to bring those issues to closure and sets the stage for the recently convened U.S. and Japan Working Groups that will develop a new dosimetry for RERF. The book outlines the changes relating to DS86 in the past 15 years, such as improved numbers that go into, and are part of, more sophisticated calculations for determining the radiations from bombs that reach certain distances in air, and encourages incorporation of the changes into a revised dosimetry system.

High-Energy Neutron Backgrounds for Underground Dark Matter Experiments

High-Energy Neutron Backgrounds for Underground Dark Matter Experiments PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 194

Book Description
Direct dark matter detection experiments usually have excellent capability to distinguish nuclear recoils, expected interactions with Weakly Interacting Massive Particle (WIMP) dark matter, and electronic recoils, so that they can efficiently reject background events such as gamma-rays and charged particles. However, both WIMPs and neutrons can induce nuclear recoils. Neutrons are then the most crucial background for direct dark matter detection. It is important to understand and account for all sources of neutron backgrounds when claiming a discovery of dark matter detection or reporting limits on the WIMP-nucleon cross section. One type of neutron background that is not well understood is the cosmogenic neutrons from muons interacting with the underground cavern rock and materials surrounding a dark matter detector. The Neutron Multiplicity Meter (NMM) is a water Cherenkov detector capable of measuring the cosmogenic neutron flux at the Soudan Underground Laboratory, which has an overburden of 2090 meters water equivalent. The NMM consists of two 2.2-tonne gadolinium-doped water tanks situated atop a 20-tonne lead target. It detects a high-energy (>~ 50 MeV) neutron via moderation and capture of the multiple secondary neutrons released when the former interacts in the lead target. The multiplicity of secondary neutrons for the high-energy neutron provides a benchmark for comparison to the current Monte Carlo predictions. Combining with the Monte Carlo simulation, the muon-induced high-energy neutron flux above 50 MeV is measured to be (1.3 ± 0.2) ~ 10-9 cm-2s-1, in reasonable agreement with the model prediction. The measured multiplicity spectrum agrees well with that of Monte Carlo simulation for multiplicity below 10, but shows an excess of approximately a factor of three over Monte Carlo prediction for multiplicities ~ 10 - 20. In an effort to reduce neutron backgrounds for the dark matter experiment SuperCDMS SNO- LAB, an active neutron veto was developed. It is estimated that the current design of the neutron veto with a 40 cm thick layer of boron-doped liquid scintillator can achieve a> 90% efficiency for tagging the single-scatter neutrons. In addition, a one-quarter scale prototype detector for neutron veto has been built and tested.

Measurement of Neutron Flux and Spectra for Physical and Biological Applications

Measurement of Neutron Flux and Spectra for Physical and Biological Applications PDF Author: United States. National Committee on Radiation Protection and Measurements
Publisher:
ISBN:
Category : Neutrons
Languages : en
Pages : 102

Book Description


Solar Particle Radiation Storms Forecasting and Analysis

Solar Particle Radiation Storms Forecasting and Analysis PDF Author: Olga E Malandraki
Publisher:
ISBN: 9781013270055
Category : Science
Languages : en
Pages : 208

Book Description
Solar energetic particles (SEPs) emitted from the Sun are a major space weather hazard motivating the development of predictive capabilities. This book presents the results and findings of the HESPERIA (High Energy Solar Particle Events forecasting and Analysis) project of the EU HORIZON 2020 programme. It discusses the forecasting operational tools developed within the project, and presents progress to SEP research contributed by HESPERIA both from the observational as well as the SEP modelling perspective. Using multi-frequency observational data and simulations HESPERIA investigated the chain of processes from particle acceleration in the corona, particle transport in the magnetically complex corona and interplanetary space, to the detection near 1 AU. The book also elaborates on the unique software that has been constructed for inverting observations of relativistic SEPs to physical parameters that can be compared with space-borne measurements at lower energies. Introductory and pedagogical material included in the book make it accessible to students at graduate level and will be useful as background material for Space Physics and Space Weather courses with emphasis on Solar Energetic Particle Event Forecasting and Analysis. This work was published by Saint Philip Street Press pursuant to a Creative Commons license permitting commercial use. All rights not granted by the work's license are retained by the author or authors.

Nuclear Science Abstracts

Nuclear Science Abstracts PDF Author:
Publisher:
ISBN:
Category : Nuclear energy
Languages : en
Pages : 1216

Book Description