Measure-valued Processes and Stochastic Flows PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Measure-valued Processes and Stochastic Flows PDF full book. Access full book title Measure-valued Processes and Stochastic Flows by Andrey A. Dorogovtsev. Download full books in PDF and EPUB format.

Measure-valued Processes and Stochastic Flows

Measure-valued Processes and Stochastic Flows PDF Author: Andrey A. Dorogovtsev
Publisher: Walter de Gruyter GmbH & Co KG
ISBN: 3110986558
Category : Mathematics
Languages : en
Pages : 295

Book Description


Measure-valued Processes and Stochastic Flows

Measure-valued Processes and Stochastic Flows PDF Author: Andrey A. Dorogovtsev
Publisher: Walter de Gruyter GmbH & Co KG
ISBN: 3110986558
Category : Mathematics
Languages : en
Pages : 295

Book Description


Measure-Valued Branching Markov Processes

Measure-Valued Branching Markov Processes PDF Author: Zenghu Li
Publisher: Springer Nature
ISBN: 3662669102
Category : Mathematics
Languages : en
Pages : 481

Book Description
This book provides a compact introduction to the theory of measure-valued branching processes, immigration processes and Ornstein–Uhlenbeck type processes. Measure-valued branching processes arise as high density limits of branching particle systems. The first part of the book gives an analytic construction of a special class of such processes, the Dawson–Watanabe superprocesses, which includes the finite-dimensional continuous-state branching process as an example. Under natural assumptions, it is shown that the superprocesses have Borel right realizations. Transformations are then used to derive the existence and regularity of several different forms of the superprocesses. This technique simplifies the constructions and gives useful new perspectives. Martingale problems of superprocesses are discussed under Feller type assumptions. The second part investigates immigration structures associated with the measure-valued branching processes. The structures are formulated by skew convolution semigroups, which are characterized in terms of infinitely divisible probability entrance laws. A theory of stochastic equations for one-dimensional continuous-state branching processes with or without immigration is developed, which plays a key role in the construction of measure flows of those processes. The third part of the book studies a class of Ornstein-Uhlenbeck type processes in Hilbert spaces defined by generalized Mehler semigroups, which arise naturally in fluctuation limit theorems of the immigration superprocesses. This volume is aimed at researchers in measure-valued processes, branching processes, stochastic analysis, biological and genetic models, and graduate students in probability theory and stochastic processes.

Stochastic Flows in the Brownian Web and Net

Stochastic Flows in the Brownian Web and Net PDF Author: Emmanuel Schertzer
Publisher: American Mathematical Soc.
ISBN: 0821890883
Category : Mathematics
Languages : en
Pages : 172

Book Description
It is known that certain one-dimensional nearest-neighbor random walks in i.i.d. random space-time environments have diffusive scaling limits. Here, in the continuum limit, the random environment is represented by a `stochastic flow of kernels', which is a collection of random kernels that can be loosely interpreted as the transition probabilities of a Markov process in a random environment. The theory of stochastic flows of kernels was first developed by Le Jan and Raimond, who showed that each such flow is characterized by its -point motions. The authors' work focuses on a class of stochastic flows of kernels with Brownian -point motions which, after their inventors, will be called Howitt-Warren flows. The authors' main result gives a graphical construction of general Howitt-Warren flows, where the underlying random environment takes on the form of a suitably marked Brownian web. This extends earlier work of Howitt and Warren who showed that a special case, the so-called "erosion flow", can be constructed from two coupled "sticky Brownian webs". The authors' construction for general Howitt-Warren flows is based on a Poisson marking procedure developed by Newman, Ravishankar and Schertzer for the Brownian web. Alternatively, the authors show that a special subclass of the Howitt-Warren flows can be constructed as random flows of mass in a Brownian net, introduced by Sun and Swart. Using these constructions, the authors prove some new results for the Howitt-Warren flows.

Measure-valued Processes and Stochastic Flows

Measure-valued Processes and Stochastic Flows PDF Author: Andrey A. Dorogovtsev
Publisher: Walter de Gruyter GmbH & Co KG
ISBN: 3110986515
Category : Mathematics
Languages : en
Pages : 228

Book Description


Ecole d'Ete de Probabilites de Saint-Flour XXI - 1991

Ecole d'Ete de Probabilites de Saint-Flour XXI - 1991 PDF Author: Donald A. Dawson
Publisher: Springer
ISBN: 3540476083
Category : Mathematics
Languages : en
Pages : 362

Book Description
CONTENTS: D.D. Dawson: Measure-valued Markov Processes.- B. Maisonneuve: Processus de Markov: Naissance, Retournement, Regeneration.- J. Spencer: Nine lectures on Random Graphs.

Stochastic Flows and Jump-Diffusions

Stochastic Flows and Jump-Diffusions PDF Author: Hiroshi Kunita
Publisher: Springer
ISBN: 9811338019
Category : Mathematics
Languages : en
Pages : 366

Book Description
This monograph presents a modern treatment of (1) stochastic differential equations and (2) diffusion and jump-diffusion processes. The simultaneous treatment of diffusion processes and jump processes in this book is unique: Each chapter starts from continuous processes and then proceeds to processes with jumps.In the first part of the book, it is shown that solutions of stochastic differential equations define stochastic flows of diffeomorphisms. Then, the relation between stochastic flows and heat equations is discussed. The latter part investigates fundamental solutions of these heat equations (heat kernels) through the study of the Malliavin calculus. The author obtains smooth densities for transition functions of various types of diffusions and jump-diffusions and shows that these density functions are fundamental solutions for various types of heat equations and backward heat equations. Thus, in this book fundamental solutions for heat equations and backward heat equations are constructed independently of the theory of partial differential equations.Researchers and graduate student in probability theory will find this book very useful.

Qualitative and Asymptotic Analysis of Differential Equations with Random Perturbations

Qualitative and Asymptotic Analysis of Differential Equations with Random Perturbations PDF Author: Anatoliy M. Samoilenko
Publisher: World Scientific
ISBN: 981432907X
Category : Mathematics
Languages : en
Pages : 323

Book Description
1. Differential equations with random right-hand sides and impulsive effects. 1.1. An impulsive process as a solution of an impulsive system. 1.2. Dissipativity. 1.3. Stability and Lyapunov functions. 1.4. Stability of systems with permanently acting random perturbations. 1.5. Solutions periodic in the restricted sense. 1.6. Periodic solutions of systems with small perturbations. 1.7. Periodic solutions of linear impulsive systems. 1.8. Weakly nonlinear systems. 1.9. Comments and references -- 2. Invariant sets for systems with random perturbations. 2.1. Invariant sets for systems with random right-hand sides. 2.2. Invariant sets for stochastic Ito systems. 2.3. The behaviour of invariant sets under small perturbations. 2.4. A study of stability of an equilibrium via the reduction principle for systems with regular random perturbations. 2.5. Stability of an equilibrium and the reduction principle for Ito type systems. 2.6. A study of stability of the invariant set via the reduction principle. Regular perturbations. 2.7. Stability of invariant sets and the reduction principle for Ito type systems. 2.8. Comments and references -- 3. Linear and quasilinear stochastic Ito systems. 3.1. Mean square exponential dichotomy. 3.2. A study of dichotomy in terms of quadratic forms. 3.3. Linear system solutions that are mean square bounded on the semiaxis. 3.4. Quasilinear systems. 3.5. Linear system solutions that are probability bounded on the axis. A generalized notion of a solution. 3.6. Asymptotic equivalence of linear systems. 3.7. Conditions for asymptotic equivalence of nonlinear systems. 3.8. Comments and references -- 4. Extensions of Ito systems on a torus. 4.1. Stability of invariant tori. 4.2. Random invariant tori for linear extensions. 4.3. Smoothness of invariant tori. 4.4. Random invariant tori for nonlinear extensions. 4.5. An ergodic theorem for a class of stochastic systems having a toroidal manifold. 4.6. Comments and references -- 5. The averaging method for equations with random perturbations. 5.1. A substantiation of the averaging method for systems with impulsive effect. 5.2. Asymptotics of normalized deviations of averaged solutions. 5.3. Applications to the theory of nonlinear oscillations. 5.4. Averaging for systems with impulsive effects at random times. 5.5. The second theorem of M.M. Bogolyubov for systems with regular random perturbations. 5.6. Averaging for stochastic Ito systems. An asymptotically finite interval. 5.7. Averaging on the semiaxis. 5.8. The averaging method and two-sided bounded solutions of Ito systems. 5.9. Comments and references

Measure-valued Processes, Stochastic Partial Differential Equations, and Interacting Systems

Measure-valued Processes, Stochastic Partial Differential Equations, and Interacting Systems PDF Author: Donald Andrew Dawson
Publisher: American Mathematical Soc.
ISBN: 9780821870440
Category : Mathematics
Languages : en
Pages : 260

Book Description
The papers in this collection explore the connections between the rapidly developing fields of measure-valued processes, stochastic partial differential equations, and interacting particle systems, each of which has undergone profound development in recent years. Bringing together ideas and tools arising from these different sources, the papers include contributions to major directions of research in these fields, explore the interface between them, and describe newly developing research problems and methodologies. Several papers are devoted to different aspects of measure-valued branching processes (also called superprocesses). Some new classes of these processes are described, including branching in catalytic media, branching with change of mass, and multilevel branching. Sample path and spatial clumping properties of superprocesses are also studied. The papers on Fleming-Viot processes arising in population genetics include discussions of the role of genealogical structures and the application of the Dirichlet form methodology. Several papers are devoted to particle systems studied in statistical physics and to stochastic partial differential equations which arise as hydrodynamic limits of such systems. With overview articles on some of the important new developments in these areas, this book would be an ideal source for an advanced graduate course on superprocesses.

From Probability to Finance

From Probability to Finance PDF Author: Ying Jiao
Publisher: Springer Nature
ISBN: 981151576X
Category : Mathematics
Languages : en
Pages : 253

Book Description
This volume presents a collection of lecture notes of mini-courses taught at BICMR Summer School of Financial Mathematics, from May 29 to June 9, 2017. Each chapter is self-contained and corresponds to one mini-course which deals with a distinguished topic, such as branching processes, enlargement of filtrations, Hawkes processes, copula models and valuation adjustment analysis, whereas the global topics cover a wide range of advanced subjects in financial mathematics, from both theoretical and practical points of view. The authors include world-leading specialists in the domain and also young active researchers. This book will be helpful for students and those who work on probability and financial mathematics.

Diffusion Processes and Related Problems in Analysis, Volume II

Diffusion Processes and Related Problems in Analysis, Volume II PDF Author: V. Wihstutz
Publisher: Springer Science & Business Media
ISBN: 1461203899
Category : Mathematics
Languages : en
Pages : 344

Book Description
During the weekend of March 16-18, 1990 the University of North Carolina at Charlotte hosted a conference on the subject of stochastic flows, as part of a Special Activity Month in the Department of Mathematics. This conference was supported jointly by a National Science Foundation grant and by the University of North Carolina at Charlotte. Originally conceived as a regional conference for researchers in the Southeastern United States, the conference eventually drew participation from both coasts of the U. S. and from abroad. This broad-based par ticipation reflects a growing interest in the viewpoint of stochastic flows, particularly in probability theory and more generally in mathematics as a whole. While the theory of deterministic flows can be considered classical, the stochastic counterpart has only been developed in the past decade, through the efforts of Harris, Kunita, Elworthy, Baxendale and others. Much of this work was done in close connection with the theory of diffusion processes, where dynamical systems implicitly enter probability theory by means of stochastic differential equations. In this regard, the Charlotte conference served as a natural outgrowth of the Conference on Diffusion Processes, held at Northwestern University, Evanston Illinois in October 1989, the proceedings of which has now been published as Volume I of the current series. Due to this natural flow of ideas, and with the assistance and support of the Editorial Board, it was decided to organize the present two-volume effort.