Matrix Methods in Data Mining and Pattern Recognition PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Matrix Methods in Data Mining and Pattern Recognition PDF full book. Access full book title Matrix Methods in Data Mining and Pattern Recognition by Lars Elden. Download full books in PDF and EPUB format.

Matrix Methods in Data Mining and Pattern Recognition

Matrix Methods in Data Mining and Pattern Recognition PDF Author: Lars Elden
Publisher: SIAM
ISBN: 0898716268
Category : Computers
Languages : en
Pages : 226

Book Description
Several very powerful numerical linear algebra techniques are available for solving problems in data mining and pattern recognition. This application-oriented book describes how modern matrix methods can be used to solve these problems, gives an introduction to matrix theory and decompositions, and provides students with a set of tools that can be modified for a particular application.Matrix Methods in Data Mining and Pattern Recognition is divided into three parts. Part I gives a short introduction to a few application areas before presenting linear algebra concepts and matrix decompositions that students can use in problem-solving environments such as MATLAB®. Some mathematical proofs that emphasize the existence and properties of the matrix decompositions are included. In Part II, linear algebra techniques are applied to data mining problems. Part III is a brief introduction to eigenvalue and singular value algorithms. The applications discussed by the author are: classification of handwritten digits, text mining, text summarization, pagerank computations related to the GoogleÔ search engine, and face recognition. Exercises and computer assignments are available on a Web page that supplements the book.Audience The book is intended for undergraduate students who have previously taken an introductory scientific computing/numerical analysis course. Graduate students in various data mining and pattern recognition areas who need an introduction to linear algebra techniques will also find the book useful.Contents Preface; Part I: Linear Algebra Concepts and Matrix Decompositions. Chapter 1: Vectors and Matrices in Data Mining and Pattern Recognition; Chapter 2: Vectors and Matrices; Chapter 3: Linear Systems and Least Squares; Chapter 4: Orthogonality; Chapter 5: QR Decomposition; Chapter 6: Singular Value Decomposition; Chapter 7: Reduced-Rank Least Squares Models; Chapter 8: Tensor Decomposition; Chapter 9: Clustering and Nonnegative Matrix Factorization; Part II: Data Mining Applications. Chapter 10: Classification of Handwritten Digits; Chapter 11: Text Mining; Chapter 12: Page Ranking for a Web Search Engine; Chapter 13: Automatic Key Word and Key Sentence Extraction; Chapter 14: Face Recognition Using Tensor SVD. Part III: Computing the Matrix Decompositions. Chapter 15: Computing Eigenvalues and Singular Values; Bibliography; Index.

Matrix Methods in Data Mining and Pattern Recognition

Matrix Methods in Data Mining and Pattern Recognition PDF Author: Lars Elden
Publisher: SIAM
ISBN: 0898716268
Category : Computers
Languages : en
Pages : 226

Book Description
Several very powerful numerical linear algebra techniques are available for solving problems in data mining and pattern recognition. This application-oriented book describes how modern matrix methods can be used to solve these problems, gives an introduction to matrix theory and decompositions, and provides students with a set of tools that can be modified for a particular application.Matrix Methods in Data Mining and Pattern Recognition is divided into three parts. Part I gives a short introduction to a few application areas before presenting linear algebra concepts and matrix decompositions that students can use in problem-solving environments such as MATLAB®. Some mathematical proofs that emphasize the existence and properties of the matrix decompositions are included. In Part II, linear algebra techniques are applied to data mining problems. Part III is a brief introduction to eigenvalue and singular value algorithms. The applications discussed by the author are: classification of handwritten digits, text mining, text summarization, pagerank computations related to the GoogleÔ search engine, and face recognition. Exercises and computer assignments are available on a Web page that supplements the book.Audience The book is intended for undergraduate students who have previously taken an introductory scientific computing/numerical analysis course. Graduate students in various data mining and pattern recognition areas who need an introduction to linear algebra techniques will also find the book useful.Contents Preface; Part I: Linear Algebra Concepts and Matrix Decompositions. Chapter 1: Vectors and Matrices in Data Mining and Pattern Recognition; Chapter 2: Vectors and Matrices; Chapter 3: Linear Systems and Least Squares; Chapter 4: Orthogonality; Chapter 5: QR Decomposition; Chapter 6: Singular Value Decomposition; Chapter 7: Reduced-Rank Least Squares Models; Chapter 8: Tensor Decomposition; Chapter 9: Clustering and Nonnegative Matrix Factorization; Part II: Data Mining Applications. Chapter 10: Classification of Handwritten Digits; Chapter 11: Text Mining; Chapter 12: Page Ranking for a Web Search Engine; Chapter 13: Automatic Key Word and Key Sentence Extraction; Chapter 14: Face Recognition Using Tensor SVD. Part III: Computing the Matrix Decompositions. Chapter 15: Computing Eigenvalues and Singular Values; Bibliography; Index.

Matrix Methods in Data Mining and Pattern Recognition, Second Edition

Matrix Methods in Data Mining and Pattern Recognition, Second Edition PDF Author: Lars Elden
Publisher: SIAM
ISBN: 1611975867
Category : Mathematics
Languages : en
Pages : 244

Book Description
This thoroughly revised second edition provides an updated treatment of numerical linear algebra techniques for solving problems in data mining and pattern recognition. Adopting an application-oriented approach, the author introduces matrix theory and decompositions, describes how modern matrix methods can be applied in real life scenarios, and provides a set of tools that students can modify for a particular application. Building on material from the first edition, the author discusses basic graph concepts and their matrix counterparts. He introduces the graph Laplacian and properties of its eigenvectors needed in spectral partitioning and describes spectral graph partitioning applied to social networks and text classification. Examples are included to help readers visualize the results. This new edition also presents matrix-based methods that underlie many of the algorithms used for big data. The book provides a solid foundation to further explore related topics and presents applications such as classification of handwritten digits, text mining, text summarization, PageRank computations related to the Google search engine, and facial recognition. Exercises and computer assignments are available on a Web page that supplements the book. This book is primarily for undergraduate students who have previously taken an introductory scientific computing/numerical analysis course and graduate students in data mining and pattern recognition areas who need an introduction to linear algebra techniques.

Solving Nonlinear Equations with Iterative Methods

Solving Nonlinear Equations with Iterative Methods PDF Author: C. T. Kelley
Publisher: SIAM
ISBN: 1611977274
Category : Mathematics
Languages : en
Pages : 201

Book Description
This user-oriented guide describes state-of-the-art methods for nonlinear equations and shows, via algorithms in pseudocode and Julia with several examples, how to choose an appropriate iterative method for a given problem and write an efficient solver or apply one written by others. A sequel to the author’s Solving Nonlinear Equations with Newton’s Methods (SIAM, 2003), this book contains new material on pseudo-transient continuation, mixed-precision solvers, and Anderson acceleration. It is supported by a Julia package and a suite of Jupyter notebooks and includes examples of nonlinear problems from many disciplines. This book is will be useful to researchers who solve nonlinear equations, students in numerical analysis, and the Julia community.

Iterative Methods and Preconditioners for Systems of Linear Equations

Iterative Methods and Preconditioners for Systems of Linear Equations PDF Author: Gabriele Ciaramella
Publisher: SIAM
ISBN: 1611976901
Category : Mathematics
Languages : en
Pages : 285

Book Description
Iterative methods use successive approximations to obtain more accurate solutions. This book gives an introduction to iterative methods and preconditioning for solving discretized elliptic partial differential equations and optimal control problems governed by the Laplace equation, for which the use of matrix-free procedures is crucial. All methods are explained and analyzed starting from the historical ideas of the inventors, which are often quoted from their seminal works. Iterative Methods and Preconditioners for Systems of Linear Equations grew out of a set of lecture notes that were improved and enriched over time, resulting in a clear focus for the teaching methodology, which derives complete convergence estimates for all methods, illustrates and provides MATLAB codes for all methods, and studies and tests all preconditioners first as stationary iterative solvers. This textbook is appropriate for undergraduate and graduate students who want an overview or deeper understanding of iterative methods. Its focus on both analysis and numerical experiments allows the material to be taught with very little preparation, since all the arguments are self-contained, and makes it appropriate for self-study as well. It can be used in courses on iterative methods, Krylov methods and preconditioners, and numerical optimal control. Scientists and engineers interested in new topics and applications will also find the text useful.

Riemann Problems and Jupyter Solutions

Riemann Problems and Jupyter Solutions PDF Author: David I. Ketcheson
Publisher: SIAM
ISBN: 1611976219
Category : Mathematics
Languages : en
Pages : 178

Book Description
This book addresses an important class of mathematical problems (the Riemann problem) for first-order hyperbolic partial differential equations (PDEs), which arise when modeling wave propagation in applications such as fluid dynamics, traffic flow, acoustics, and elasticity. The solution of the Riemann problem captures essential information about these models and is the key ingredient in modern numerical methods for their solution. This book covers the fundamental ideas related to classical Riemann solutions, including their special structure and the types of waves that arise, as well as the ideas behind fast approximate solvers for the Riemann problem. The emphasis is on the general ideas, but each chapter delves into a particular application. Riemann Problems and Jupyter Solutions is available in electronic form as a collection of Jupyter notebooks that contain executable computer code and interactive figures and animations, allowing readers to grasp how the concepts presented are affected by important parameters and to experiment by varying those parameters themselves. The only interactive book focused entirely on the Riemann problem, it develops each concept in the context of a specific physical application, helping readers apply physical intuition in learning mathematical concepts. Graduate students and researchers working in the analysis and/or numerical solution of hyperbolic PDEs will find this book of interest. This includes mathematicians, as well as scientists and engineers, working on wave propagation problems. Educators interested in developing instructional materials using Jupyter notebooks will also find this book useful. The book is appropriate for courses in Numerical Methods for Hyperbolic PDEs and Analysis of Hyperbolic PDEs, and it can be a great supplement for courses in computational fluid dynamics, acoustics, and gas dynamics.

Location Estimation from the Ground Up

Location Estimation from the Ground Up PDF Author: Sivan Toledo
Publisher: SIAM
ISBN: 1611976294
Category : Technology & Engineering
Languages : en
Pages : 216

Book Description
The location of an object can often be determined from indirect measurements using a process called estimation. This book explains the mathematical formulation of location-estimation problems and the statistical properties of these mathematical models. It also presents algorithms that are used to resolve these models to obtain location estimates, including the simplest linear models, nonlinear models (location estimation using satellite navigation systems and estimation of the signal arrival time from those satellites), dynamical systems (estimation of an entire path taken by a vehicle), and models with integer ambiguities (GPS location estimation that is centimeter-level accurate). Location Estimation from the Ground Up clearly presents analytic and algorithmic topics not covered in other books, including simple algorithms for Kalman filtering and smoothing, the solution of separable nonlinear optimization problems, estimation with integer ambiguities, and the implicit-function approach to estimating covariance matrices when the estimator is a minimizer or maximizer. It takes a unified approach to estimation while highlighting the differences between classes of estimation problems. The only book on estimation written for math and computer science students and graduates, it includes problems at the end of each chapter, many with solutions, to help readers deepen their understanding of the material and guide them through small programming projects that apply theory and algorithms to the solution of real-world location-estimation problems. The book’s core audience consists of engineers, including software engineers and algorithm developers, and graduate students who work on location-estimation projects and who need help translating the theory into algorithms, code, and deep understanding of the problem in front of them. Instructors in mathematics, computer science, and engineering may also find the book of interest as a primary or supplementary text for courses in location estimation and navigation.

Computed Tomography

Computed Tomography PDF Author: Per Christian Hansen
Publisher: SIAM
ISBN: 1611976677
Category : Mathematics
Languages : en
Pages : 355

Book Description
This book describes fundamental computational methods for image reconstruction in computed tomography (CT) with a focus on a pedagogical presentation of these methods and their underlying concepts. Insights into the advantages, limitations, and theoretical and computational aspects of the methods are included, giving a balanced presentation that allows readers to understand and implement CT reconstruction algorithms. Unique in its emphasis on the interplay between modeling, computing, and algorithm development, Computed Tomography: Algorithms, Insight, and Just Enough Theory develops the mathematical and computational aspects of three main classes of reconstruction methods: classical filtered back-projection, algebraic iterative methods, and variational methods based on nonlinear numerical optimization algorithms. It spotlights the link between CT and numerical methods, which is rarely discussed in current literature, and describes the effects of incomplete data using both microlocal analysis and singular value decomposition (SVD). This book sets the stage for further exploration of CT algorithms. Readers will be able to grasp the underlying mathematical models to motivate and derive the basic principles of CT reconstruction and will gain basic understanding of fundamental computational challenges of CT, such as the influence of noisy and incomplete data, as well as the reconstruction capabilities and the convergence of the iterative algorithms. Exercises using MATLAB are included, allowing readers to experiment with the algorithms and making the book suitable for teaching and self-study. Computed Tomography: Algorithms, Insight, and Just Enough Theory is primarily aimed at students, researchers, and practitioners interested in the computational aspects of X-ray CT and is also relevant for anyone working with other forms of tomography, such as neutron and electron tomography, that share the same mathematical formulation. With its basis in lecture notes developed for a PhD course, it is appropriate as a textbook for courses on computational methods for X-ray CT and computational methods for inverse problems.

Pattern Recognition and Machine Learning

Pattern Recognition and Machine Learning PDF Author: Christopher M. Bishop
Publisher: Springer
ISBN: 9781493938438
Category : Computers
Languages : en
Pages : 0

Book Description
This is the first textbook on pattern recognition to present the Bayesian viewpoint. The book presents approximate inference algorithms that permit fast approximate answers in situations where exact answers are not feasible. It uses graphical models to describe probability distributions when no other books apply graphical models to machine learning. No previous knowledge of pattern recognition or machine learning concepts is assumed. Familiarity with multivariate calculus and basic linear algebra is required, and some experience in the use of probabilities would be helpful though not essential as the book includes a self-contained introduction to basic probability theory.

Digital Processing of Random Signals

Digital Processing of Random Signals PDF Author: Boaz Porat
Publisher: Courier Dover Publications
ISBN: 0486462986
Category : Technology & Engineering
Languages : en
Pages : 468

Book Description
This excellent advanced text rigorously covers several topics. Geared toward students of electrical engineering, its material is sufficiently general to be applicable to other engineering fields. 1994 edition.

Kernel Methods for Pattern Analysis

Kernel Methods for Pattern Analysis PDF Author: John Shawe-Taylor
Publisher: Cambridge University Press
ISBN: 9780521813976
Category : Computers
Languages : en
Pages : 520

Book Description
Publisher Description