Matrix-Based Multigrid PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Matrix-Based Multigrid PDF full book. Access full book title Matrix-Based Multigrid by Yair Shapira. Download full books in PDF and EPUB format.

Matrix-Based Multigrid

Matrix-Based Multigrid PDF Author: Yair Shapira
Publisher: Springer Science & Business Media
ISBN: 1475737262
Category : Mathematics
Languages : en
Pages : 225

Book Description
Many important problems in applied science and engineering, such as the Navier Stokes equations in fluid dynamics, the primitive equations in global climate mod eling, the strain-stress equations in mechanics, the neutron diffusion equations in nuclear engineering, and MRIICT medical simulations, involve complicated sys tems of nonlinear partial differential equations. When discretized, such problems produce extremely large, nonlinear systems of equations, whose numerical solution is prohibitively costly in terms of time and storage. High-performance (parallel) computers and efficient (parallelizable) algorithms are clearly necessary. Three classical approaches to the solution of such systems are: Newton's method, Preconditioned Conjugate Gradients (and related Krylov-space acceleration tech niques), and multigrid methods. The first two approaches require the solution of large sparse linear systems at every iteration, which are themselves often solved by multigrid methods. Developing robust and efficient multigrid algorithms is thus of great importance. The original multigrid algorithm was developed for the Poisson equation in a square, discretized by finite differences on a uniform grid. For this model problem, multigrid exhibits extremely rapid convergence, and actually solves the problem in the minimal possible time. The original algorithm uses rediscretization of the partial differential equation (POE) on each grid in the hierarchy of coarse grids that are used. However, this approach would not work for more complicated problems, such as problems on complicated domains and nonuniform grids, problems with variable coefficients, and non symmetric and indefinite equations. In these cases, matrix-based multi grid methods are in order.

Matrix-Based Multigrid

Matrix-Based Multigrid PDF Author: Yair Shapira
Publisher: Springer Science & Business Media
ISBN: 1475737262
Category : Mathematics
Languages : en
Pages : 225

Book Description
Many important problems in applied science and engineering, such as the Navier Stokes equations in fluid dynamics, the primitive equations in global climate mod eling, the strain-stress equations in mechanics, the neutron diffusion equations in nuclear engineering, and MRIICT medical simulations, involve complicated sys tems of nonlinear partial differential equations. When discretized, such problems produce extremely large, nonlinear systems of equations, whose numerical solution is prohibitively costly in terms of time and storage. High-performance (parallel) computers and efficient (parallelizable) algorithms are clearly necessary. Three classical approaches to the solution of such systems are: Newton's method, Preconditioned Conjugate Gradients (and related Krylov-space acceleration tech niques), and multigrid methods. The first two approaches require the solution of large sparse linear systems at every iteration, which are themselves often solved by multigrid methods. Developing robust and efficient multigrid algorithms is thus of great importance. The original multigrid algorithm was developed for the Poisson equation in a square, discretized by finite differences on a uniform grid. For this model problem, multigrid exhibits extremely rapid convergence, and actually solves the problem in the minimal possible time. The original algorithm uses rediscretization of the partial differential equation (POE) on each grid in the hierarchy of coarse grids that are used. However, this approach would not work for more complicated problems, such as problems on complicated domains and nonuniform grids, problems with variable coefficients, and non symmetric and indefinite equations. In these cases, matrix-based multi grid methods are in order.

Matrix-Based Multigrid

Matrix-Based Multigrid PDF Author: Yair Shapira
Publisher: Springer
ISBN: 9780387564715
Category : Mathematics
Languages : en
Pages : 0

Book Description
Matrix-Based Multigrid introduces and analyzes the multigrid approach for the numerical solution of large sparse linear systems arising from the discretization of elliptic partial differential equations. Special attention is given to the powerful matrix-based-multigrid approach, which is particularly useful for problems with variable coefficients and nonsymmetric and indefinite problems. This book can be used as a textbook in courses in numerical analysis, numerical linear algebra, and numerical PDEs at the advanced undergraduate and graduate levels in computer science, math, and applied math departments. The theory is written in simple algebraic terms and therefore requires preliminary knowledge only in basic linear algebra and calculus.

Multilevel Block Factorization Preconditioners

Multilevel Block Factorization Preconditioners PDF Author: Panayot S. Vassilevski
Publisher: Springer Science & Business Media
ISBN: 0387715649
Category : Mathematics
Languages : en
Pages : 527

Book Description
This monograph is the first to provide a comprehensive, self-contained and rigorous presentation of some of the most powerful preconditioning methods for solving finite element equations in a common block-matrix factorization framework. The book covers both algorithms and analysis using a common block-matrix factorization approach which emphasizes its unique feature. Topics covered include the classical incomplete block-factorization preconditioners, the most efficient methods such as the multigrid, algebraic multigrid, and domain decomposition. This text can serve as an indispensable reference for researchers, graduate students, and practitioners. It can also be used as a supplementary text for a topics course in preconditioning and/or multigrid methods at the graduate level.

A Multigrid Tutorial

A Multigrid Tutorial PDF Author: William L. Briggs
Publisher: SIAM
ISBN: 0898714621
Category : Mathematics
Languages : en
Pages : 196

Book Description
Mathematics of Computing -- Numerical Analysis.

Numerical Solution of Partial Differential Equations on Parallel Computers

Numerical Solution of Partial Differential Equations on Parallel Computers PDF Author: Are Magnus Bruaset
Publisher: Springer Science & Business Media
ISBN: 3540316191
Category : Mathematics
Languages : en
Pages : 491

Book Description
Since the dawn of computing, the quest for a better understanding of Nature has been a driving force for technological development. Groundbreaking achievements by great scientists have paved the way from the abacus to the supercomputing power of today. When trying to replicate Nature in the computer’s silicon test tube, there is need for precise and computable process descriptions. The scienti?c ?elds of Ma- ematics and Physics provide a powerful vehicle for such descriptions in terms of Partial Differential Equations (PDEs). Formulated as such equations, physical laws can become subject to computational and analytical studies. In the computational setting, the equations can be discreti ed for ef?cient solution on a computer, leading to valuable tools for simulation of natural and man-made processes. Numerical so- tion of PDE-based mathematical models has been an important research topic over centuries, and will remain so for centuries to come. In the context of computer-based simulations, the quality of the computed results is directly connected to the model’s complexity and the number of data points used for the computations. Therefore, computational scientists tend to ?ll even the largest and most powerful computers they can get access to, either by increasing the si e of the data sets, or by introducing new model terms that make the simulations more realistic, or a combination of both. Today, many important simulation problems can not be solved by one single computer, but calls for parallel computing.

multigrid methods

multigrid methods PDF Author: Stephen F. Mccormick
Publisher: CRC Press
ISBN: 100010379X
Category : Mathematics
Languages : en
Pages : 665

Book Description
This book is a collection of research papers on a wide variety of multigrid topics, including applications, computation and theory. It represents proceedings of the Third Copper Mountain Conference on Multigrid Methods, which was held at Copper Mountain, Colorado.

Multigrid Methods

Multigrid Methods PDF Author: Ulrich Trottenberg
Publisher: Academic Press
ISBN: 9780127010700
Category : Mathematics
Languages : en
Pages : 652

Book Description
Mathematics of Computing -- Numerical Analysis.

Hierarchical Matrix Based Smoother for the Multigrid Method

Hierarchical Matrix Based Smoother for the Multigrid Method PDF Author: David Priebel
Publisher:
ISBN:
Category : Multigrid methods (Numerical analysis)
Languages : en
Pages : 122

Book Description


Matrix Computations

Matrix Computations PDF Author: Gene H. Golub
Publisher: JHU Press
ISBN: 1421407949
Category : Mathematics
Languages : en
Pages : 781

Book Description
This revised edition provides the mathematical background and algorithmic skills required for the production of numerical software. It includes rewritten and clarified proofs and derivations, as well as new topics such as Arnoldi iteration, and domain decomposition methods.

Scientific Computing in Electrical Engineering

Scientific Computing in Electrical Engineering PDF Author: Andreas Bartel
Publisher: Springer
ISBN: 3319303996
Category : Mathematics
Languages : en
Pages : 251

Book Description
This book is a collection of selected papers presented at the 10th International Conference on Scientific Computing in Electrical Engineering (SCEE), held in Wuppertal, Germany in 2014. The book is divided into five parts, reflecting the main directions of SCEE 2014: 1. Device Modeling, Electric Circuits and Simulation, 2. Computational Electromagnetics, 3. Coupled Problems, 4. Model Order Reduction, and 5. Uncertainty Quantification. Each part starts with a general introduction followed by the actual papers. The aim of the SCEE 2014 conference was to bring together scientists from academia and industry, mathematicians, electrical engineers, computer scientists, and physicists, with the goal of fostering intensive discussions on industrially relevant mathematical problems, with an emphasis on the modeling and numerical simulation of electronic circuits and devices, electromagnetic fields, and coupled problems. The methodological focus was on model order reduction and uncertainty quantification. this book="" will="" appeal="" to="" mathematicians="" and="" electrical="" engineers.="" it="" offers="" a="" valuable="" starting="" point="" for="" developers="" of="" algorithms="" programs="" who="" want="" learn="" about="" recent="" advances="" in="" other="" fields="" as="" well="" open="" problems="" coming="" from="" industry.="" moreover,="" be="" use="" representatives="" industry="" with="" an="" interest="" new="" program="" tools="" mathematical="" methods.