Mathematics and Plausible Reasoning [Two Volumes in One] PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Mathematics and Plausible Reasoning [Two Volumes in One] PDF full book. Access full book title Mathematics and Plausible Reasoning [Two Volumes in One] by George Polya. Download full books in PDF and EPUB format.

Mathematics and Plausible Reasoning [Two Volumes in One]

Mathematics and Plausible Reasoning [Two Volumes in One] PDF Author: George Polya
Publisher:
ISBN: 9781614275572
Category : Mathematics
Languages : en
Pages : 498

Book Description
2014 Reprint of 1954 American Edition. Full facsimile of the original edition, not reproduced with Optical Recognition Software. This two volume classic comprises two titles: "Patterns of Plausible Inference" and "Induction and Analogy in Mathematics." This is a guide to the practical art of plausible reasoning, particularly in mathematics, but also in every field of human activity. Using mathematics as the example par excellence, Polya shows how even the most rigorous deductive discipline is heavily dependent on techniques of guessing, inductive reasoning, and reasoning by analogy. In solving a problem, the answer must be guessed at before a proof can be given, and guesses are usually made from a knowledge of facts, experience, and hunches. The truly creative mathematician must be a good guesser first and a good prover afterward; many important theorems have been guessed but no proved until much later. In the same way, solutions to problems can be guessed, and a god guesser is much more likely to find a correct solution. This work might have been called "How to Become a Good Guesser."-From the Dust Jacket.

Mathematics and Plausible Reasoning [Two Volumes in One]

Mathematics and Plausible Reasoning [Two Volumes in One] PDF Author: George Polya
Publisher:
ISBN: 9781614275572
Category : Mathematics
Languages : en
Pages : 498

Book Description
2014 Reprint of 1954 American Edition. Full facsimile of the original edition, not reproduced with Optical Recognition Software. This two volume classic comprises two titles: "Patterns of Plausible Inference" and "Induction and Analogy in Mathematics." This is a guide to the practical art of plausible reasoning, particularly in mathematics, but also in every field of human activity. Using mathematics as the example par excellence, Polya shows how even the most rigorous deductive discipline is heavily dependent on techniques of guessing, inductive reasoning, and reasoning by analogy. In solving a problem, the answer must be guessed at before a proof can be given, and guesses are usually made from a knowledge of facts, experience, and hunches. The truly creative mathematician must be a good guesser first and a good prover afterward; many important theorems have been guessed but no proved until much later. In the same way, solutions to problems can be guessed, and a god guesser is much more likely to find a correct solution. This work might have been called "How to Become a Good Guesser."-From the Dust Jacket.

Patterns of Plausible Inference

Patterns of Plausible Inference PDF Author: George Pólya
Publisher:
ISBN: 9780691080062
Category : Mathematics
Languages : en
Pages : 200

Book Description
A guide to the practical art of plausible reasoning, this book has relevance in every field of intellectual activity. Professor Polya, a world-famous mathematician from Stanford University, uses mathematics to show how hunches and guesses play an important part in even the most rigorously deductive science. He explains how solutions to problems can be guessed at; good guessing is often more important than rigorous deduction in finding correct solutions. Vol. II, on Patterns of Plausible Inference, attempts to develop a logic of plausibility. What makes some evidence stronger and some weaker? How does one seek evidence that will make a suspected truth more probable? These questions involve philosophy and psychology as well as mathematics.

Street-Fighting Mathematics

Street-Fighting Mathematics PDF Author: Sanjoy Mahajan
Publisher: MIT Press
ISBN: 0262265591
Category : Education
Languages : en
Pages : 152

Book Description
An antidote to mathematical rigor mortis, teaching how to guess answers without needing a proof or an exact calculation. In problem solving, as in street fighting, rules are for fools: do whatever works—don't just stand there! Yet we often fear an unjustified leap even though it may land us on a correct result. Traditional mathematics teaching is largely about solving exactly stated problems exactly, yet life often hands us partly defined problems needing only moderately accurate solutions. This engaging book is an antidote to the rigor mortis brought on by too much mathematical rigor, teaching us how to guess answers without needing a proof or an exact calculation. In Street-Fighting Mathematics, Sanjoy Mahajan builds, sharpens, and demonstrates tools for educated guessing and down-and-dirty, opportunistic problem solving across diverse fields of knowledge—from mathematics to management. Mahajan describes six tools: dimensional analysis, easy cases, lumping, picture proofs, successive approximation, and reasoning by analogy. Illustrating each tool with numerous examples, he carefully separates the tool—the general principle—from the particular application so that the reader can most easily grasp the tool itself to use on problems of particular interest. Street-Fighting Mathematics grew out of a short course taught by the author at MIT for students ranging from first-year undergraduates to graduate students ready for careers in physics, mathematics, management, electrical engineering, computer science, and biology. They benefited from an approach that avoided rigor and taught them how to use mathematics to solve real problems. Street-Fighting Mathematics will appear in print and online under a Creative Commons Noncommercial Share Alike license.

Regularity Theory for Mean Curvature Flow

Regularity Theory for Mean Curvature Flow PDF Author: Klaus Ecker
Publisher: Springer Science & Business Media
ISBN: 0817682104
Category : Mathematics
Languages : en
Pages : 173

Book Description
* Devoted to the motion of surfaces for which the normal velocity at every point is given by the mean curvature at that point; this geometric heat flow process is called mean curvature flow. * Mean curvature flow and related geometric evolution equations are important tools in mathematics and mathematical physics.

Probability Distributions on Banach Spaces

Probability Distributions on Banach Spaces PDF Author: N Vakhania
Publisher: Springer Science & Business Media
ISBN: 940093873X
Category : Mathematics
Languages : en
Pages : 507

Book Description
Approach your problems from the right end It isn't that they can't see the solution. It is and begin with the answers. Then one day, that they can't see the problem. perhaps you will find the final question. G. K. Chesterton. The Scandal of Father 'The Hermit Clad in Crane Feathers' in R Brown 'The point of a Pin'. van Gulik's The Chinese Maze Murders. Growing specialization and diversification have brought a host of monographs and textbooks on increasingly specialized topics. However, the "tree" of knowledge of mathematics and related fields does not grow only by putting forth new branches. It also happens, quite often in fact, that branches which were thought to be completely disparate are suddenly seen to be related. Further, the kind and level of sophistication of mathematics applied in various sciences has changed drastically in recent years: measure theory is used (non trivially) in regional and theoretical economics; algebraic geometry interacts with physics; the Minkowsky lemma, coding theory and the structure of water meet one another in packing and covering theory; quantum fields, crystal defects and mathematical programming profit from homotopy theory; Lie algebras are relevant to filtering; and prediction and electrical engineering can use Stein spaces. And in addition to this there are such new emerging subdisciplines as "experimental mathematics", "CFD", "completely integrable systems", "chaos, synergetics and large-scale order", which are almost impossible to fit into the existing classification schemes. They draw upon widely different sections of mathematics.

Patterns of Plausible Inference

Patterns of Plausible Inference PDF Author: G. Polya
Publisher:
ISBN:
Category :
Languages : en
Pages : 240

Book Description


Mathematics and Plausible Reasoning: Patterns of plausible inference

Mathematics and Plausible Reasoning: Patterns of plausible inference PDF Author: G. Polya
Publisher: Princeton University Press
ISBN: 9780691025100
Category : Mathematics
Languages : en
Pages : 242

Book Description
"Here the author of How to Solve It explains how to become a "good guesser." Marked by G. Polya's simple, energetic prose and use of clever examples from a wide range of human activities, this two-volume work explores techniques of guessing, inductive reasoning, and reasoning by analogy, and the role they play in the most rigorous of deductive disciplines."--Book cover.

Mathematical Discovery on Understanding, Learning, and Teaching Problem Solving

Mathematical Discovery on Understanding, Learning, and Teaching Problem Solving PDF Author: George Pólya
Publisher:
ISBN: 9784871878319
Category : Mathematics
Languages : en
Pages : 236

Book Description
George Polya was a Hungarian mathematician. Born in Budapest on 13 December 1887, his original name was Polya Gyorg. He wrote perhaps the most famous book of mathematics ever written, namely "How to Solve It." However, "How to Solve It" is not strictly speaking a math book. It is a book about how to solve problems of any kind, of which math is just one type of problem. The same techniques could in principle be used to solve any problem one encounters in life (such as how to choose the best wife ). Therefore, Polya wrote the current volume to explain how the techniques set forth in "How to Solve It" can be applied to specific areas such as geometry.

Data and Evidence in Linguistics

Data and Evidence in Linguistics PDF Author: András Kertész
Publisher: Cambridge University Press
ISBN: 1107378427
Category : Language Arts & Disciplines
Languages : en
Pages :

Book Description
The question of what types of data and evidence can be used is one of the most important topics in linguistics. This book is the first to comprehensively present the methodological problems associated with linguistic data and evidence. Its originality is twofold. First, the authors' approach accounts for a series of unexplained characteristics of linguistic theorising: the uncertainty and diversity of data, the role of evidence in the evaluation of hypotheses, the problem solving strategies as well as the emergence and resolution of inconsistencies. Second, the findings are obtained by the application of a new model of plausible argumentation which is also of relevance from a general argumentation theoretical point of view. All concepts and theses are systematically introduced and illustrated by a number of examples from different linguistic theories, and a detailed case-study section shows how the proposed model can be applied to specific linguistic problems.

Control Theory for Partial Differential Equations: Volume 1, Abstract Parabolic Systems

Control Theory for Partial Differential Equations: Volume 1, Abstract Parabolic Systems PDF Author: Irena Lasiecka
Publisher: Cambridge University Press
ISBN: 9780521434089
Category : Mathematics
Languages : en
Pages : 678

Book Description
Originally published in 2000, this is the first volume of a comprehensive two-volume treatment of quadratic optimal control theory for partial differential equations over a finite or infinite time horizon, and related differential (integral) and algebraic Riccati equations. Both continuous theory and numerical approximation theory are included. The authors use an abstract space, operator theoretic approach, which is based on semigroups methods, and which is unifying across a few basic classes of evolution. The various abstract frameworks are motivated by, and ultimately directed to, partial differential equations with boundary/point control. Volume 1 includes the abstract parabolic theory for the finite and infinite cases and corresponding PDE illustrations as well as various abstract hyperbolic settings in the finite case. It presents numerous fascinating results. These volumes will appeal to graduate students and researchers in pure and applied mathematics and theoretical engineering with an interest in optimal control problems.