Mathematical Theory of Bayesian Statistics PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Mathematical Theory of Bayesian Statistics PDF full book. Access full book title Mathematical Theory of Bayesian Statistics by Sumio Watanabe. Download full books in PDF and EPUB format.

Mathematical Theory of Bayesian Statistics

Mathematical Theory of Bayesian Statistics PDF Author: Sumio Watanabe
Publisher: CRC Press
ISBN: 148223808X
Category : Mathematics
Languages : en
Pages : 331

Book Description
Mathematical Theory of Bayesian Statistics introduces the mathematical foundation of Bayesian inference which is well-known to be more accurate in many real-world problems than the maximum likelihood method. Recent research has uncovered several mathematical laws in Bayesian statistics, by which both the generalization loss and the marginal likelihood are estimated even if the posterior distribution cannot be approximated by any normal distribution. Features Explains Bayesian inference not subjectively but objectively. Provides a mathematical framework for conventional Bayesian theorems. Introduces and proves new theorems. Cross validation and information criteria of Bayesian statistics are studied from the mathematical point of view. Illustrates applications to several statistical problems, for example, model selection, hyperparameter optimization, and hypothesis tests. This book provides basic introductions for students, researchers, and users of Bayesian statistics, as well as applied mathematicians. Author Sumio Watanabe is a professor of Department of Mathematical and Computing Science at Tokyo Institute of Technology. He studies the relationship between algebraic geometry and mathematical statistics.