Author: Susanne Schindler-Tschirner
Publisher: Springer Nature
ISBN: 3658386118
Category : Mathematics
Languages : en
Pages : 69
Book Description
Using field-tested, carefully crafted units of study, the authors in this essential teach fundamental mathematical techniques that are relevant well beyond the elementary school years. In this Volume II, the Gaussian summation formula and a recursion formula are derived and applied. Tasks on divisibility, prime factors and divisors follow. For calculating with remainders, the modulo calculation is introduced and applied. Students learn to perform proofs in a variety of contexts. As in Volume I, "Graphs, Games, and Proofs," the tasks encourage mathematical thinking skills, imagination, and creativity. The detailed sample solutions are designed for non-mathematicians. This book is a translation of the original German 1st edition Mathematische Geschichten II – Rekursion, Teilbarkeit und Beweise by Susanne Schindler-Tschirner and Werner Schindler, published by Springer Fachmedien Wiesbaden GmbH, part of Springer Nature in 2019. The translation was done with the help of artificial intelligence (machine translation by the service DeepL.com). A subsequent human revision was done primarily in terms of content, so that the book will read stylistically differently from a conventional translation. Springer Nature works continuously to further the development of tools for the production of books and on the related technologies to support the authors.
Mathematical Stories II - Recursion, Divisibility and Proofs
Author: Susanne Schindler-Tschirner
Publisher: Springer Nature
ISBN: 3658386118
Category : Mathematics
Languages : en
Pages : 69
Book Description
Using field-tested, carefully crafted units of study, the authors in this essential teach fundamental mathematical techniques that are relevant well beyond the elementary school years. In this Volume II, the Gaussian summation formula and a recursion formula are derived and applied. Tasks on divisibility, prime factors and divisors follow. For calculating with remainders, the modulo calculation is introduced and applied. Students learn to perform proofs in a variety of contexts. As in Volume I, "Graphs, Games, and Proofs," the tasks encourage mathematical thinking skills, imagination, and creativity. The detailed sample solutions are designed for non-mathematicians. This book is a translation of the original German 1st edition Mathematische Geschichten II – Rekursion, Teilbarkeit und Beweise by Susanne Schindler-Tschirner and Werner Schindler, published by Springer Fachmedien Wiesbaden GmbH, part of Springer Nature in 2019. The translation was done with the help of artificial intelligence (machine translation by the service DeepL.com). A subsequent human revision was done primarily in terms of content, so that the book will read stylistically differently from a conventional translation. Springer Nature works continuously to further the development of tools for the production of books and on the related technologies to support the authors.
Publisher: Springer Nature
ISBN: 3658386118
Category : Mathematics
Languages : en
Pages : 69
Book Description
Using field-tested, carefully crafted units of study, the authors in this essential teach fundamental mathematical techniques that are relevant well beyond the elementary school years. In this Volume II, the Gaussian summation formula and a recursion formula are derived and applied. Tasks on divisibility, prime factors and divisors follow. For calculating with remainders, the modulo calculation is introduced and applied. Students learn to perform proofs in a variety of contexts. As in Volume I, "Graphs, Games, and Proofs," the tasks encourage mathematical thinking skills, imagination, and creativity. The detailed sample solutions are designed for non-mathematicians. This book is a translation of the original German 1st edition Mathematische Geschichten II – Rekursion, Teilbarkeit und Beweise by Susanne Schindler-Tschirner and Werner Schindler, published by Springer Fachmedien Wiesbaden GmbH, part of Springer Nature in 2019. The translation was done with the help of artificial intelligence (machine translation by the service DeepL.com). A subsequent human revision was done primarily in terms of content, so that the book will read stylistically differently from a conventional translation. Springer Nature works continuously to further the development of tools for the production of books and on the related technologies to support the authors.
How to Prove It
Author: Daniel J. Velleman
Publisher: Cambridge University Press
ISBN: 0521861241
Category : Mathematics
Languages : en
Pages : 401
Book Description
Many students have trouble the first time they take a mathematics course in which proofs play a significant role. This new edition of Velleman's successful text will prepare students to make the transition from solving problems to proving theorems by teaching them the techniques needed to read and write proofs. The book begins with the basic concepts of logic and set theory, to familiarize students with the language of mathematics and how it is interpreted. These concepts are used as the basis for a step-by-step breakdown of the most important techniques used in constructing proofs. The author shows how complex proofs are built up from these smaller steps, using detailed 'scratch work' sections to expose the machinery of proofs about the natural numbers, relations, functions, and infinite sets. To give students the opportunity to construct their own proofs, this new edition contains over 200 new exercises, selected solutions, and an introduction to Proof Designer software. No background beyond standard high school mathematics is assumed. This book will be useful to anyone interested in logic and proofs: computer scientists, philosophers, linguists, and of course mathematicians.
Publisher: Cambridge University Press
ISBN: 0521861241
Category : Mathematics
Languages : en
Pages : 401
Book Description
Many students have trouble the first time they take a mathematics course in which proofs play a significant role. This new edition of Velleman's successful text will prepare students to make the transition from solving problems to proving theorems by teaching them the techniques needed to read and write proofs. The book begins with the basic concepts of logic and set theory, to familiarize students with the language of mathematics and how it is interpreted. These concepts are used as the basis for a step-by-step breakdown of the most important techniques used in constructing proofs. The author shows how complex proofs are built up from these smaller steps, using detailed 'scratch work' sections to expose the machinery of proofs about the natural numbers, relations, functions, and infinite sets. To give students the opportunity to construct their own proofs, this new edition contains over 200 new exercises, selected solutions, and an introduction to Proof Designer software. No background beyond standard high school mathematics is assumed. This book will be useful to anyone interested in logic and proofs: computer scientists, philosophers, linguists, and of course mathematicians.
Transition to Higher Mathematics
Author: Bob A. Dumas
Publisher: McGraw-Hill Education
ISBN: 9780071106474
Category : Logic, Symbolic and mathematical
Languages : en
Pages : 0
Book Description
This book is written for students who have taken calculus and want to learn what "real mathematics" is.
Publisher: McGraw-Hill Education
ISBN: 9780071106474
Category : Logic, Symbolic and mathematical
Languages : en
Pages : 0
Book Description
This book is written for students who have taken calculus and want to learn what "real mathematics" is.
Introduction to Mathematical Structures and Proofs
Author: Larry J. Gerstein
Publisher: Springer
ISBN: 3642592791
Category : Medical
Languages : en
Pages : 356
Book Description
This is a textbook for a one-term course whose goal is to ease the transition from lower-division calculus courses to upper-division courses in linear and abstract algebra, real and complex analysis, number theory, topology, combinatorics, and so on. Without such a "bridge" course, most upper division instructors feel the need to start their courses with the . rudiments of logic, set theory, equivalence relations, and other basic mathematiCal raw materials before getting on with the subject at hand. Students who are new to higher mathematics are often startled to discover that mathematics is a subject of ideas, and not just formulaic rituals, and that they are now expected to understand and create mathematical proofs. Mastery of an assortment of technical tricks may have carried tHe students through calculus, but it is no longer a guarantee of academic success. Students need experience in working with abstract ideas at a n
Publisher: Springer
ISBN: 3642592791
Category : Medical
Languages : en
Pages : 356
Book Description
This is a textbook for a one-term course whose goal is to ease the transition from lower-division calculus courses to upper-division courses in linear and abstract algebra, real and complex analysis, number theory, topology, combinatorics, and so on. Without such a "bridge" course, most upper division instructors feel the need to start their courses with the . rudiments of logic, set theory, equivalence relations, and other basic mathematiCal raw materials before getting on with the subject at hand. Students who are new to higher mathematics are often startled to discover that mathematics is a subject of ideas, and not just formulaic rituals, and that they are now expected to understand and create mathematical proofs. Mastery of an assortment of technical tricks may have carried tHe students through calculus, but it is no longer a guarantee of academic success. Students need experience in working with abstract ideas at a n
Mathematical Writing
Author: Donald E. Knuth
Publisher: Cambridge University Press
ISBN: 9780883850633
Category : Language Arts & Disciplines
Languages : en
Pages : 132
Book Description
This book will help those wishing to teach a course in technical writing, or who wish to write themselves.
Publisher: Cambridge University Press
ISBN: 9780883850633
Category : Language Arts & Disciplines
Languages : en
Pages : 132
Book Description
This book will help those wishing to teach a course in technical writing, or who wish to write themselves.
Mathematics for Computer Science
Author: Eric Lehman
Publisher:
ISBN: 9789888407064
Category : Business & Economics
Languages : en
Pages : 988
Book Description
This book covers elementary discrete mathematics for computer science and engineering. It emphasizes mathematical definitions and proofs as well as applicable methods. Topics include formal logic notation, proof methods; induction, well-ordering; sets, relations; elementary graph theory; integer congruences; asymptotic notation and growth of functions; permutations and combinations, counting principles; discrete probability. Further selected topics may also be covered, such as recursive definition and structural induction; state machines and invariants; recurrences; generating functions.
Publisher:
ISBN: 9789888407064
Category : Business & Economics
Languages : en
Pages : 988
Book Description
This book covers elementary discrete mathematics for computer science and engineering. It emphasizes mathematical definitions and proofs as well as applicable methods. Topics include formal logic notation, proof methods; induction, well-ordering; sets, relations; elementary graph theory; integer congruences; asymptotic notation and growth of functions; permutations and combinations, counting principles; discrete probability. Further selected topics may also be covered, such as recursive definition and structural induction; state machines and invariants; recurrences; generating functions.
Proofs and Fundamentals
Author: Ethan D. Bloch
Publisher: Springer Science & Business Media
ISBN: 1461221307
Category : Mathematics
Languages : en
Pages : 434
Book Description
The aim of this book is to help students write mathematics better. Throughout it are large exercise sets well-integrated with the text and varying appropriately from easy to hard. Basic issues are treated, and attention is given to small issues like not placing a mathematical symbol directly after a punctuation mark. And it provides many examples of what students should think and what they should write and how these two are often not the same.
Publisher: Springer Science & Business Media
ISBN: 1461221307
Category : Mathematics
Languages : en
Pages : 434
Book Description
The aim of this book is to help students write mathematics better. Throughout it are large exercise sets well-integrated with the text and varying appropriately from easy to hard. Basic issues are treated, and attention is given to small issues like not placing a mathematical symbol directly after a punctuation mark. And it provides many examples of what students should think and what they should write and how these two are often not the same.
Concrete Mathematics
Author: Ronald L. Graham
Publisher: Addison-Wesley Professional
ISBN: 0134389980
Category : Computers
Languages : en
Pages : 811
Book Description
This book introduces the mathematics that supports advanced computer programming and the analysis of algorithms. The primary aim of its well-known authors is to provide a solid and relevant base of mathematical skills - the skills needed to solve complex problems, to evaluate horrendous sums, and to discover subtle patterns in data. It is an indispensable text and reference not only for computer scientists - the authors themselves rely heavily on it! - but for serious users of mathematics in virtually every discipline. Concrete Mathematics is a blending of CONtinuous and disCRETE mathematics. "More concretely," the authors explain, "it is the controlled manipulation of mathematical formulas, using a collection of techniques for solving problems." The subject matter is primarily an expansion of the Mathematical Preliminaries section in Knuth's classic Art of Computer Programming, but the style of presentation is more leisurely, and individual topics are covered more deeply. Several new topics have been added, and the most significant ideas have been traced to their historical roots. The book includes more than 500 exercises, divided into six categories. Complete answers are provided for all exercises, except research problems, making the book particularly valuable for self-study. Major topics include: Sums Recurrences Integer functions Elementary number theory Binomial coefficients Generating functions Discrete probability Asymptotic methods This second edition includes important new material about mechanical summation. In response to the widespread use of the first edition as a reference book, the bibliography and index have also been expanded, and additional nontrivial improvements can be found on almost every page. Readers will appreciate the informal style of Concrete Mathematics. Particularly enjoyable are the marginal graffiti contributed by students who have taken courses based on this material. The authors want to convey not only the importance of the techniques presented, but some of the fun in learning and using them.
Publisher: Addison-Wesley Professional
ISBN: 0134389980
Category : Computers
Languages : en
Pages : 811
Book Description
This book introduces the mathematics that supports advanced computer programming and the analysis of algorithms. The primary aim of its well-known authors is to provide a solid and relevant base of mathematical skills - the skills needed to solve complex problems, to evaluate horrendous sums, and to discover subtle patterns in data. It is an indispensable text and reference not only for computer scientists - the authors themselves rely heavily on it! - but for serious users of mathematics in virtually every discipline. Concrete Mathematics is a blending of CONtinuous and disCRETE mathematics. "More concretely," the authors explain, "it is the controlled manipulation of mathematical formulas, using a collection of techniques for solving problems." The subject matter is primarily an expansion of the Mathematical Preliminaries section in Knuth's classic Art of Computer Programming, but the style of presentation is more leisurely, and individual topics are covered more deeply. Several new topics have been added, and the most significant ideas have been traced to their historical roots. The book includes more than 500 exercises, divided into six categories. Complete answers are provided for all exercises, except research problems, making the book particularly valuable for self-study. Major topics include: Sums Recurrences Integer functions Elementary number theory Binomial coefficients Generating functions Discrete probability Asymptotic methods This second edition includes important new material about mechanical summation. In response to the widespread use of the first edition as a reference book, the bibliography and index have also been expanded, and additional nontrivial improvements can be found on almost every page. Readers will appreciate the informal style of Concrete Mathematics. Particularly enjoyable are the marginal graffiti contributed by students who have taken courses based on this material. The authors want to convey not only the importance of the techniques presented, but some of the fun in learning and using them.
Combinatorics: The Art of Counting
Author: Bruce E. Sagan
Publisher: American Mathematical Soc.
ISBN: 1470460327
Category : Education
Languages : en
Pages : 304
Book Description
This book is a gentle introduction to the enumerative part of combinatorics suitable for study at the advanced undergraduate or beginning graduate level. In addition to covering all the standard techniques for counting combinatorial objects, the text contains material from the research literature which has never before appeared in print, such as the use of quotient posets to study the Möbius function and characteristic polynomial of a partially ordered set, or the connection between quasisymmetric functions and pattern avoidance. The book assumes minimal background, and a first course in abstract algebra should suffice. The exposition is very reader friendly: keeping a moderate pace, using lots of examples, emphasizing recurring themes, and frankly expressing the delight the author takes in mathematics in general and combinatorics in particular.
Publisher: American Mathematical Soc.
ISBN: 1470460327
Category : Education
Languages : en
Pages : 304
Book Description
This book is a gentle introduction to the enumerative part of combinatorics suitable for study at the advanced undergraduate or beginning graduate level. In addition to covering all the standard techniques for counting combinatorial objects, the text contains material from the research literature which has never before appeared in print, such as the use of quotient posets to study the Möbius function and characteristic polynomial of a partially ordered set, or the connection between quasisymmetric functions and pattern avoidance. The book assumes minimal background, and a first course in abstract algebra should suffice. The exposition is very reader friendly: keeping a moderate pace, using lots of examples, emphasizing recurring themes, and frankly expressing the delight the author takes in mathematics in general and combinatorics in particular.
An Introduction to Abstract Mathematics
Author: Robert J. Bond
Publisher: Waveland Press
ISBN: 1478608056
Category : Mathematics
Languages : en
Pages : 344
Book Description
Bond and Keane explicate the elements of logical, mathematical argument to elucidate the meaning and importance of mathematical rigor. With definitions of concepts at their disposal, students learn the rules of logical inference, read and understand proofs of theorems, and write their own proofs all while becoming familiar with the grammar of mathematics and its style. In addition, they will develop an appreciation of the different methods of proof (contradiction, induction), the value of a proof, and the beauty of an elegant argument. The authors emphasize that mathematics is an ongoing, vibrant disciplineits long, fascinating history continually intersects with territory still uncharted and questions still in need of answers. The authors extensive background in teaching mathematics shines through in this balanced, explicit, and engaging text, designed as a primer for higher- level mathematics courses. They elegantly demonstrate process and application and recognize the byproducts of both the achievements and the missteps of past thinkers. Chapters 1-5 introduce the fundamentals of abstract mathematics and chapters 6-8 apply the ideas and techniques, placing the earlier material in a real context. Readers interest is continually piqued by the use of clear explanations, practical examples, discussion and discovery exercises, and historical comments.
Publisher: Waveland Press
ISBN: 1478608056
Category : Mathematics
Languages : en
Pages : 344
Book Description
Bond and Keane explicate the elements of logical, mathematical argument to elucidate the meaning and importance of mathematical rigor. With definitions of concepts at their disposal, students learn the rules of logical inference, read and understand proofs of theorems, and write their own proofs all while becoming familiar with the grammar of mathematics and its style. In addition, they will develop an appreciation of the different methods of proof (contradiction, induction), the value of a proof, and the beauty of an elegant argument. The authors emphasize that mathematics is an ongoing, vibrant disciplineits long, fascinating history continually intersects with territory still uncharted and questions still in need of answers. The authors extensive background in teaching mathematics shines through in this balanced, explicit, and engaging text, designed as a primer for higher- level mathematics courses. They elegantly demonstrate process and application and recognize the byproducts of both the achievements and the missteps of past thinkers. Chapters 1-5 introduce the fundamentals of abstract mathematics and chapters 6-8 apply the ideas and techniques, placing the earlier material in a real context. Readers interest is continually piqued by the use of clear explanations, practical examples, discussion and discovery exercises, and historical comments.