Mathematical Physics PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Mathematical Physics PDF full book. Access full book title Mathematical Physics by Francis Bitter. Download full books in PDF and EPUB format.

Mathematical Physics

Mathematical Physics PDF Author: Francis Bitter
Publisher: Courier Corporation
ISBN: 0486435016
Category : Mathematics
Languages : en
Pages : 210

Book Description
Reader-friendly guide offers illustrative examples of the rules of physical science and how they were formulated. Topics include the role of mathematics as the language of physics; nature of mechanical vibrations; harmonic motion and shapes; geometry of the laws of motion; more. 60 figures. 1963 edition.

Mathematical Physics

Mathematical Physics PDF Author: Francis Bitter
Publisher: Courier Corporation
ISBN: 0486435016
Category : Mathematics
Languages : en
Pages : 210

Book Description
Reader-friendly guide offers illustrative examples of the rules of physical science and how they were formulated. Topics include the role of mathematics as the language of physics; nature of mechanical vibrations; harmonic motion and shapes; geometry of the laws of motion; more. 60 figures. 1963 edition.

Equations of Mathematical Physics

Equations of Mathematical Physics PDF Author: A. N. Tikhonov
Publisher: Courier Corporation
ISBN: 0486173364
Category : Mathematics
Languages : en
Pages : 802

Book Description
Mathematical physics plays an important role in the study of many physical processes — hydrodynamics, elasticity, and electrodynamics, to name just a few. Because of the enormous range and variety of problems dealt with by mathematical physics, this thorough advanced undergraduate- or graduate-level text considers only those problems leading to partial differential equations. Contents: I. Classification of Partial Differential Equations II. Evaluations of the Hyperbolic Type III. Equations of the Parabolic Type IV. Equations of Elliptic Type V. Wave Propagation in Space VI. Heat Conduction in Space VII. Equations of Elliptic Type (Continuation) The authors — two well-known Russian mathematicians — have focused on typical physical processes and the principal types of equations dealing with them. Special attention is paid throughout to mathematical formulation, rigorous solutions, and physical interpretation of the results obtained. Carefully chosen problems designed to promote technical skills are contained in each chapter, along with extremely useful appendixes that supply applications of solution methods described in the main text. At the end of the book, a helpful supplement discusses special functions, including spherical and cylindrical functions.

Mathematics of Classical and Quantum Physics

Mathematics of Classical and Quantum Physics PDF Author: Frederick W. Byron
Publisher: Courier Corporation
ISBN: 0486135063
Category : Science
Languages : en
Pages : 674

Book Description
Graduate-level text offers unified treatment of mathematics applicable to many branches of physics. Theory of vector spaces, analytic function theory, theory of integral equations, group theory, and more. Many problems. Bibliography.

Mathematical Physics with Partial Differential Equations

Mathematical Physics with Partial Differential Equations PDF Author: James Kirkwood
Publisher: Academic Press
ISBN: 0123869110
Category : Mathematics
Languages : en
Pages : 431

Book Description
Suitable for advanced undergraduate and beginning graduate students taking a course on mathematical physics, this title presents some of the most important topics and methods of mathematical physics. It contains mathematical derivations and solutions - reinforcing the material through repetition of both the equations and the techniques.

Mathematical Physics X

Mathematical Physics X PDF Author: Konrad Schmüdgen
Publisher: Springer Science & Business Media
ISBN: 3642773036
Category : Science
Languages : en
Pages : 511

Book Description
th This volume contains the proceedings of the X Congress of the Interna tional Association of Mathematical Physics, held at the University of Leipzig from 30 July until 9 August 1991. There were more than 400 participants, from 29 countries, making it a truly international gathering. The congress had the support of the Deutsche Forschungsgemeinschaft, the European Economic Community, the International Association of Math ematical Physics, the International Mathematical Union and the Interna tional Union of Pure and Applied Physics. There were also sponsors from in dustry and commerce: ATC Mann, Deutsche Bank AG, Miele & Cie GmbH, NEC Deutschland GmbH, Rank Xerox, Siemens AG and Stiftungsfonds IBM Deutschland. On behalf of the congress participants and the members of the International Association of Mathematical Physics, I would like to thank all these organisations for their very generous support. The congress took place under the auspices of the Ministerp6isident des Freistaates Sachsen, K. Biedenkopf. The conference began with an address by A. Uhlmann, Chairman of the Local Organizing Committee. This was followed by speeches of welcome from F. Magirius, City President of Leipzig; C. Weiss, Rector of the Uni versity of Leipzig; and A. Jaffe, President of the International Association of Mathematical Physics."

Explorations in Mathematical Physics

Explorations in Mathematical Physics PDF Author: Don Koks
Publisher: Springer Science & Business Media
ISBN: 0387309438
Category : Science
Languages : en
Pages : 549

Book Description
Have you ever wondered why the language of modern physics centres on geometry? Or how quantum operators and Dirac brackets work? What a convolution really is? What tensors are all about? Or what field theory and lagrangians are, and why gravity is described as curvature? This book takes you on a tour of the main ideas forming the language of modern mathematical physics. Here you will meet novel approaches to concepts such as determinants and geometry, wave function evolution, statistics, signal processing, and three-dimensional rotations. You will see how the accelerated frames of special relativity tell us about gravity. On the journey, you will discover how tensor notation relates to vector calculus, how differential geometry is built on intuitive concepts, and how variational calculus leads to field theory. You will meet quantum measurement theory, along with Green functions and the art of complex integration, and finally general relativity and cosmology. The book takes a fresh approach to tensor analysis built solely on the metric and vectors, with no need for one-forms. This gives a much more geometrical and intuitive insight into vector and tensor calculus, together with general relativity, than do traditional, more abstract methods. Don Koks is a physicist at the Defence Science and Technology Organisation in Adelaide, Australia. His doctorate in quantum cosmology was obtained from the Department of Physics and Mathematical Physics at Adelaide University. Prior work at the University of Auckland specialised in applied accelerator physics, along with pure and applied mathematics.

The Functions of Mathematical Physics

The Functions of Mathematical Physics PDF Author: Harry Hochstadt
Publisher: Courier Corporation
ISBN: 0486168786
Category : Science
Languages : en
Pages : 354

Book Description
A modern classic, this clearly written, incisive textbook provides a comprehensive, detailed survey of the functions of mathematical physics, a field of study straddling the somewhat artificial boundary between pure and applied mathematics. In the 18th and 19th centuries, the theorists who devoted themselves to this field — pioneers such as Gauss, Euler, Fourier, Legendre, and Bessel — were searching for mathematical solutions to physical problems. Today, although most of the functions have practical applications, in areas ranging from the quantum-theoretical model of the atom to the vibrating membrane, some, such as those related to the theory of discontinuous groups, still remain of purely mathematical interest. Chapters One and Two examine orthogonal polynomials, with sections on such topics as the recurrence formula, the Christoffel-Darboux formula, the Weierstrass approximation theorem, and the application of Hermite polynomials to quantum mechanics. Chapter Three is devoted to the principal properties of the gamma function, including asymptotic expansions and Mellin-Barnes integrals. Chapter Four covers hypergeometric functions, including a review of linear differential equations with regular singular points, and a general method for finding integral representations. Chapters Five and Six are concerned with the Legendre functions and their use in the solutions of Laplace's equation in spherical coordinates, as well as problems in an n-dimension setting. Chapter Seven deals with confluent hypergeometric functions, and Chapter Eight examines, at length, the most important of these — the Bessel functions. Chapter Nine covers Hill's equations, including the expansion theorems.

Analysis and Mathematical Physics

Analysis and Mathematical Physics PDF Author: H. Triebel
Publisher: Springer Science & Business Media
ISBN: 9789027720771
Category : Mathematics
Languages : en
Pages : 494

Book Description


Partial Differential Equations in Classical Mathematical Physics

Partial Differential Equations in Classical Mathematical Physics PDF Author: Isaak Rubinstein
Publisher: Cambridge University Press
ISBN: 9780521558464
Category : Mathematics
Languages : en
Pages : 704

Book Description
The unique feature of this book is that it considers the theory of partial differential equations in mathematical physics as the language of continuous processes, that is, as an interdisciplinary science that treats the hierarchy of mathematical phenomena as reflections of their physical counterparts. Special attention is drawn to tracing the development of these mathematical phenomena in different natural sciences, with examples drawn from continuum mechanics, electrodynamics, transport phenomena, thermodynamics, and chemical kinetics. At the same time, the authors trace the interrelation between the different types of problems - elliptic, parabolic, and hyperbolic - as the mathematical counterparts of stationary and evolutionary processes. This combination of mathematical comprehensiveness and natural scientific motivation represents a step forward in the presentation of the classical theory of PDEs, one that will be appreciated by both students and researchers alike.

Introduction to Mathematical Physics

Introduction to Mathematical Physics PDF Author: Chun Wa Wong
Publisher: OUP Oxford
ISBN: 0191648604
Category : Science
Languages : en
Pages : 731

Book Description
Mathematical physics provides physical theories with their logical basis and the tools for drawing conclusions from hypotheses. Introduction to Mathematical Physics explains to the reader why and how mathematics is needed in the description of physical events in space. For undergraduates in physics, it is a classroom-tested textbook on vector analysis, linear operators, Fourier series and integrals, differential equations, special functions and functions of a complex variable. Strongly correlated with core undergraduate courses on classical and quantum mechanics and electromagnetism, it helps the student master these necessary mathematical skills. It contains advanced topics of interest to graduate students on relativistic square-root spaces and nonlinear systems. It contains many tables of mathematical formulas and references to useful materials on the Internet. It includes short tutorials on basic mathematical topics to help readers refresh their mathematical knowledge. An appendix on Mathematica encourages the reader to use computer-aided algebra to solve problems in mathematical physics. A free Instructor's Solutions Manual is available to instructors who order the book for course adoption.