Author: Michael C. G.
Publisher:
ISBN:
Category :
Languages : en
Pages : 120
Book Description
The Mathematical Olympiads for Elementary School are open mathematical Olympiads for students from 1st to 4th grade of elementary school, and they have been held every year in the city of Moscow since 1996, their first editions taking place in the facilities of the Moscow State University - Maly Mekhmat. Although initially these Olympiads were conceived for students of a study circle of elementary school, then it was extended to students in general since 2005. Being the Technological University of Russia - MIREA its main headquarters today. Likewise, these Olympiads consist of two rounds, a qualifying round and a final round, both consisting of a written exam. The problems included in this book correspond to the final round of these Olympiads for the 3rd grade of elementary school.In this workbook has been compiled all the Olympiads held during the years 2011-2020 and is especially aimed at schoolchildren between 8 and 9 years old, with the aim that the students interested either in preparing for a math competition or simply in practicing entertaining problems to improve their math skills, challenge themselves to solve these interesting problems (recommended even to elementary school children in upper grades with little or no experience in Math Olympiads and who require comprehensive preparation before a competition); or it could even be used for a self-evaluation in this competition, trying the student to solve the greatest number of problems in each exam in a maximum time of 1.5 hours. It can also be useful for teachers, parents, and math study circles. The book has been carefully crafted so that the student can work on the same book without the need for additional sheets, what will allow the student to have an orderly record of the problems already solved.Each exam includes a set of 8 problems from different school math topics. To be able to face these problems successfully, no greater knowledge is required than that covered in the school curriculum; however, many of these problems require an ingenious approach to be tackled successfully. Students are encouraged to keep trying to solve each problem as a personal challenge, as many times as necessary; and to parents who continue to support their children in their disciplined preparation. Once an answer is obtained, it can be checked against the answers given at the end of the book.
Mathematical Olympiads for Elementary School 3 - Third Grade
Author: Michael C. G.
Publisher:
ISBN:
Category :
Languages : en
Pages : 120
Book Description
The Mathematical Olympiads for Elementary School are open mathematical Olympiads for students from 1st to 4th grade of elementary school, and they have been held every year in the city of Moscow since 1996, their first editions taking place in the facilities of the Moscow State University - Maly Mekhmat. Although initially these Olympiads were conceived for students of a study circle of elementary school, then it was extended to students in general since 2005. Being the Technological University of Russia - MIREA its main headquarters today. Likewise, these Olympiads consist of two rounds, a qualifying round and a final round, both consisting of a written exam. The problems included in this book correspond to the final round of these Olympiads for the 3rd grade of elementary school.In this workbook has been compiled all the Olympiads held during the years 2011-2020 and is especially aimed at schoolchildren between 8 and 9 years old, with the aim that the students interested either in preparing for a math competition or simply in practicing entertaining problems to improve their math skills, challenge themselves to solve these interesting problems (recommended even to elementary school children in upper grades with little or no experience in Math Olympiads and who require comprehensive preparation before a competition); or it could even be used for a self-evaluation in this competition, trying the student to solve the greatest number of problems in each exam in a maximum time of 1.5 hours. It can also be useful for teachers, parents, and math study circles. The book has been carefully crafted so that the student can work on the same book without the need for additional sheets, what will allow the student to have an orderly record of the problems already solved.Each exam includes a set of 8 problems from different school math topics. To be able to face these problems successfully, no greater knowledge is required than that covered in the school curriculum; however, many of these problems require an ingenious approach to be tackled successfully. Students are encouraged to keep trying to solve each problem as a personal challenge, as many times as necessary; and to parents who continue to support their children in their disciplined preparation. Once an answer is obtained, it can be checked against the answers given at the end of the book.
Publisher:
ISBN:
Category :
Languages : en
Pages : 120
Book Description
The Mathematical Olympiads for Elementary School are open mathematical Olympiads for students from 1st to 4th grade of elementary school, and they have been held every year in the city of Moscow since 1996, their first editions taking place in the facilities of the Moscow State University - Maly Mekhmat. Although initially these Olympiads were conceived for students of a study circle of elementary school, then it was extended to students in general since 2005. Being the Technological University of Russia - MIREA its main headquarters today. Likewise, these Olympiads consist of two rounds, a qualifying round and a final round, both consisting of a written exam. The problems included in this book correspond to the final round of these Olympiads for the 3rd grade of elementary school.In this workbook has been compiled all the Olympiads held during the years 2011-2020 and is especially aimed at schoolchildren between 8 and 9 years old, with the aim that the students interested either in preparing for a math competition or simply in practicing entertaining problems to improve their math skills, challenge themselves to solve these interesting problems (recommended even to elementary school children in upper grades with little or no experience in Math Olympiads and who require comprehensive preparation before a competition); or it could even be used for a self-evaluation in this competition, trying the student to solve the greatest number of problems in each exam in a maximum time of 1.5 hours. It can also be useful for teachers, parents, and math study circles. The book has been carefully crafted so that the student can work on the same book without the need for additional sheets, what will allow the student to have an orderly record of the problems already solved.Each exam includes a set of 8 problems from different school math topics. To be able to face these problems successfully, no greater knowledge is required than that covered in the school curriculum; however, many of these problems require an ingenious approach to be tackled successfully. Students are encouraged to keep trying to solve each problem as a personal challenge, as many times as necessary; and to parents who continue to support their children in their disciplined preparation. Once an answer is obtained, it can be checked against the answers given at the end of the book.
Mathematical Olympiads for Elementary School 5 - Fifth Grade
Author: Michael C. G.
Publisher:
ISBN:
Category :
Languages : en
Pages : 200
Book Description
The Mathematical Olympiads for the Fifth Grade of Elementary School discussed here are none other than the Open Mathematical Olympiads of the City for the 5th grade which are held every year in the city of Moscow since 2007, at the facilities of the Technological University of Russia - MIREA. These Olympiads consist of two independent rounds, one written and one oral. Likewise, the problems included here correspond to the written round, which present two levels of difficulty, of 10 and 5 problems respectively.In this workbook has been compiled all the Olympiads held during the years 2011-2020 and is especially aimed at schoolchildren between 10 and 11 years old, with the aim that the students interested either in preparing for a math competition or simply in practicing entertaining problems to improve their math skills, challenge themselves to solve these interesting problems (recommended even to middle school students with little or no experience in Math Olympiads and who require comprehensive preparation before a competition); or it could even be used for a self-evaluation in this competition, trying the student to solve the greatest number of problems in each exam in a maximum time of 2 hours. It can also be useful for teachers, parents, and math study circles. The book has been carefully crafted so that the student can work on the same book without the need for additional sheets, what will allow the student to have an orderly record of the problems already solved.Each exam includes a set of 15 problems from different school math topics. To be able to face these problems successfully, no greater knowledge is required than that covered in the school curriculum; however, many of these problems require an ingenious approach to be tackled successfully. Students are encouraged to keep trying to solve each problem as a personal challenge, as many times as necessary; and to parents who continue to support their children in their disciplined preparation. Once an answer is obtained, it can be checked against the answers given at the end of the book.
Publisher:
ISBN:
Category :
Languages : en
Pages : 200
Book Description
The Mathematical Olympiads for the Fifth Grade of Elementary School discussed here are none other than the Open Mathematical Olympiads of the City for the 5th grade which are held every year in the city of Moscow since 2007, at the facilities of the Technological University of Russia - MIREA. These Olympiads consist of two independent rounds, one written and one oral. Likewise, the problems included here correspond to the written round, which present two levels of difficulty, of 10 and 5 problems respectively.In this workbook has been compiled all the Olympiads held during the years 2011-2020 and is especially aimed at schoolchildren between 10 and 11 years old, with the aim that the students interested either in preparing for a math competition or simply in practicing entertaining problems to improve their math skills, challenge themselves to solve these interesting problems (recommended even to middle school students with little or no experience in Math Olympiads and who require comprehensive preparation before a competition); or it could even be used for a self-evaluation in this competition, trying the student to solve the greatest number of problems in each exam in a maximum time of 2 hours. It can also be useful for teachers, parents, and math study circles. The book has been carefully crafted so that the student can work on the same book without the need for additional sheets, what will allow the student to have an orderly record of the problems already solved.Each exam includes a set of 15 problems from different school math topics. To be able to face these problems successfully, no greater knowledge is required than that covered in the school curriculum; however, many of these problems require an ingenious approach to be tackled successfully. Students are encouraged to keep trying to solve each problem as a personal challenge, as many times as necessary; and to parents who continue to support their children in their disciplined preparation. Once an answer is obtained, it can be checked against the answers given at the end of the book.
Math Olympiad Contest Problems for Elementary and Middle Schools
Author: George Lenchner
Publisher: Glenwood Publications Incorporated
ISBN: 9780962666216
Category : Juvenile Fiction
Languages : en
Pages : 280
Book Description
Publisher: Glenwood Publications Incorporated
ISBN: 9780962666216
Category : Juvenile Fiction
Languages : en
Pages : 280
Book Description
A Decade of the Berkeley Math Circle
Author: Zvezdelina Stankova
Publisher: American Mathematical Soc.
ISBN: 0821846833
Category : Mathematics
Languages : en
Pages : 346
Book Description
Many mathematicians have been drawn to mathematics through their experience with math circles: extracurricular programs exposing teenage students to advanced mathematical topics and a myriad of problem solving techniques and inspiring in them a lifelong love for mathematics. Founded in 1998, the Berkeley Math Circle (BMC) is a pioneering model of a U.S. math circle, aspiring to prepare our best young minds for their future roles as mathematics leaders. Over the last decade, 50 instructors--from university professors to high school teachers to business tycoons--have shared their passion for mathematics by delivering more than 320 BMC sessions full of mathematical challenges and wonders. Based on a dozen of these sessions, this book encompasses a wide variety of enticing mathematical topics: from inversion in the plane to circle geometry; from combinatorics to Rubik's cube and abstract algebra; from number theory to mass point theory; from complex numbers to game theory via invariants and monovariants. The treatments of these subjects encompass every significant method of proof and emphasize ways of thinking and reasoning via 100 problem solving techniques. Also featured are 300 problems, ranging from beginner to intermediate level, with occasional peaks of advanced problems and even some open questions. The book presents possible paths to studying mathematics and inevitably falling in love with it, via teaching two important skills: thinking creatively while still ``obeying the rules,'' and making connections between problems, ideas, and theories. The book encourages you to apply the newly acquired knowledge to problems and guides you along the way, but rarely gives you ready answers. ``Learning from our own mistakes'' often occurs through discussions of non-proofs and common problem solving pitfalls. The reader has to commit to mastering the new theories and techniques by ``getting your hands dirty'' with the problems, going back and reviewing necessary problem solving techniques and theory, and persistently moving forward in the book. The mathematical world is huge: you'll never know everything, but you'll learn where to find things, how to connect and use them. The rewards will be substantial. In the interest of fostering a greater awareness and appreciation of mathematics and its connections to other disciplines and everyday life, MSRI and the AMS are publishing books in the Mathematical Circles Library series as a service to young people, their parents and teachers, and the mathematics profession.
Publisher: American Mathematical Soc.
ISBN: 0821846833
Category : Mathematics
Languages : en
Pages : 346
Book Description
Many mathematicians have been drawn to mathematics through their experience with math circles: extracurricular programs exposing teenage students to advanced mathematical topics and a myriad of problem solving techniques and inspiring in them a lifelong love for mathematics. Founded in 1998, the Berkeley Math Circle (BMC) is a pioneering model of a U.S. math circle, aspiring to prepare our best young minds for their future roles as mathematics leaders. Over the last decade, 50 instructors--from university professors to high school teachers to business tycoons--have shared their passion for mathematics by delivering more than 320 BMC sessions full of mathematical challenges and wonders. Based on a dozen of these sessions, this book encompasses a wide variety of enticing mathematical topics: from inversion in the plane to circle geometry; from combinatorics to Rubik's cube and abstract algebra; from number theory to mass point theory; from complex numbers to game theory via invariants and monovariants. The treatments of these subjects encompass every significant method of proof and emphasize ways of thinking and reasoning via 100 problem solving techniques. Also featured are 300 problems, ranging from beginner to intermediate level, with occasional peaks of advanced problems and even some open questions. The book presents possible paths to studying mathematics and inevitably falling in love with it, via teaching two important skills: thinking creatively while still ``obeying the rules,'' and making connections between problems, ideas, and theories. The book encourages you to apply the newly acquired knowledge to problems and guides you along the way, but rarely gives you ready answers. ``Learning from our own mistakes'' often occurs through discussions of non-proofs and common problem solving pitfalls. The reader has to commit to mastering the new theories and techniques by ``getting your hands dirty'' with the problems, going back and reviewing necessary problem solving techniques and theory, and persistently moving forward in the book. The mathematical world is huge: you'll never know everything, but you'll learn where to find things, how to connect and use them. The rewards will be substantial. In the interest of fostering a greater awareness and appreciation of mathematics and its connections to other disciplines and everyday life, MSRI and the AMS are publishing books in the Mathematical Circles Library series as a service to young people, their parents and teachers, and the mathematics profession.
Problems And Solutions In Mathematical Olympiad (High School 2)
Author: Shi-xiong Liu
Publisher: World Scientific
ISBN: 9811229902
Category : Mathematics
Languages : en
Pages : 607
Book Description
The series is edited by the head coaches of China's IMO National Team. Each volume, catering to different grades, is contributed by the senior coaches of the IMO National Team. The Chinese edition has won the award of Top 50 Most Influential Educational Brands in China.The series is created in line with the mathematics cognition and intellectual development levels of the students in the corresponding grades. All hot mathematics topics of the competition are included in the volumes and are organized into chapters where concepts and methods are gradually introduced to equip the students with necessary knowledge until they can finally reach the competition level.In each chapter, well-designed problems including those collected from real competitions are provided so that the students can apply the skills and strategies they have learned to solve these problems. Detailed solutions are provided selectively. As a feature of the series, we also include some solutions generously offered by the members of Chinese national team and national training team.
Publisher: World Scientific
ISBN: 9811229902
Category : Mathematics
Languages : en
Pages : 607
Book Description
The series is edited by the head coaches of China's IMO National Team. Each volume, catering to different grades, is contributed by the senior coaches of the IMO National Team. The Chinese edition has won the award of Top 50 Most Influential Educational Brands in China.The series is created in line with the mathematics cognition and intellectual development levels of the students in the corresponding grades. All hot mathematics topics of the competition are included in the volumes and are organized into chapters where concepts and methods are gradually introduced to equip the students with necessary knowledge until they can finally reach the competition level.In each chapter, well-designed problems including those collected from real competitions are provided so that the students can apply the skills and strategies they have learned to solve these problems. Detailed solutions are provided selectively. As a feature of the series, we also include some solutions generously offered by the members of Chinese national team and national training team.
Mathematical Olympiads for Elementary School 4 - Fourth Grade
Author: Michael C. G.
Publisher:
ISBN:
Category :
Languages : en
Pages : 120
Book Description
The Mathematical Olympiads for Elementary School are open mathematical Olympiads for students from 1st to 4th grade of elementary school, and they have been held every year in the city of Moscow since 1996, their first editions taking place in the facilities of the Moscow State University - Maly Mekhmat. Although initially these Olympiads were conceived for students of a study circle of elementary school, then it was extended to students in general since 2005. Being the Technological University of Russia - MIREA its main headquarters today. Likewise, these Olympiads consist of two rounds, a qualifying round and a final round, both consisting of a written exam. The problems included in this book correspond to the final round of these Olympiads, for the 4th grade of elementary school. In this workbook has been compiled all the Olympiads held during the years 2011-2020 and is especially aimed at schoolchildren between 9 and 10 years old, with the aim that any student interested in mathematics either in preparing for a competition or in simply practicing entertaining problems to improve his math skills, challenging himself to solve these interesting problems (recommended even to elementary school children in upper grades with little or no experience in Math Olympiads and who require comprehensive preparation before a competition); or it could even be used for a self-evaluation in this competition, trying the student to solve the greatest number of problems in each exam in a maximum time of 2 hours. It can also be useful for teachers, parents, and study circles in mathematics. The book has been carefully crafted so that the student can work on the same book without the need for additional sheets. What will allow the student to have an orderly record of the problems already solved. Each exam includes a set of 8 problems from different school math topics. To be able to face these problems successfully, no greater knowledge is required than that covered in the school curriculum; however, many of these problems require an ingenious approach to be tackled successfully. Students are encouraged to keep trying to solve each problem as a personal challenge, as many times as necessary; and to parents who continue to support their children in their disciplined preparation. Once an answer is obtained, you can check it against the answers given at the end of the book.
Publisher:
ISBN:
Category :
Languages : en
Pages : 120
Book Description
The Mathematical Olympiads for Elementary School are open mathematical Olympiads for students from 1st to 4th grade of elementary school, and they have been held every year in the city of Moscow since 1996, their first editions taking place in the facilities of the Moscow State University - Maly Mekhmat. Although initially these Olympiads were conceived for students of a study circle of elementary school, then it was extended to students in general since 2005. Being the Technological University of Russia - MIREA its main headquarters today. Likewise, these Olympiads consist of two rounds, a qualifying round and a final round, both consisting of a written exam. The problems included in this book correspond to the final round of these Olympiads, for the 4th grade of elementary school. In this workbook has been compiled all the Olympiads held during the years 2011-2020 and is especially aimed at schoolchildren between 9 and 10 years old, with the aim that any student interested in mathematics either in preparing for a competition or in simply practicing entertaining problems to improve his math skills, challenging himself to solve these interesting problems (recommended even to elementary school children in upper grades with little or no experience in Math Olympiads and who require comprehensive preparation before a competition); or it could even be used for a self-evaluation in this competition, trying the student to solve the greatest number of problems in each exam in a maximum time of 2 hours. It can also be useful for teachers, parents, and study circles in mathematics. The book has been carefully crafted so that the student can work on the same book without the need for additional sheets. What will allow the student to have an orderly record of the problems already solved. Each exam includes a set of 8 problems from different school math topics. To be able to face these problems successfully, no greater knowledge is required than that covered in the school curriculum; however, many of these problems require an ingenious approach to be tackled successfully. Students are encouraged to keep trying to solve each problem as a personal challenge, as many times as necessary; and to parents who continue to support their children in their disciplined preparation. Once an answer is obtained, you can check it against the answers given at the end of the book.
Mathematical Olympiad Treasures
Author: Titu Andreescu
Publisher: Springer Science & Business Media
ISBN: 0817682538
Category : Mathematics
Languages : en
Pages : 256
Book Description
Mathematical Olympiad Treasures aims at building a bridge between ordinary high school exercises and more sophisticated, intricate and abstract concepts in undergraduate mathematics. The book contains a stimulating collection of problems in the subjects of algebra, geometry, trigonometry, number theory and combinatorics. While it may be considered a sequel to "Mathematical Olympiad Challenges," the focus is on engaging a wider audience to apply techniques and strategies to real-world problems. Throughout the book students are encouraged to express their ideas, conjectures, and conclusions in writing. The goal is to help readers develop a host of new mathematical tools that will be useful beyond the classroom and in a number of disciplines.
Publisher: Springer Science & Business Media
ISBN: 0817682538
Category : Mathematics
Languages : en
Pages : 256
Book Description
Mathematical Olympiad Treasures aims at building a bridge between ordinary high school exercises and more sophisticated, intricate and abstract concepts in undergraduate mathematics. The book contains a stimulating collection of problems in the subjects of algebra, geometry, trigonometry, number theory and combinatorics. While it may be considered a sequel to "Mathematical Olympiad Challenges," the focus is on engaging a wider audience to apply techniques and strategies to real-world problems. Throughout the book students are encouraged to express their ideas, conjectures, and conclusions in writing. The goal is to help readers develop a host of new mathematical tools that will be useful beyond the classroom and in a number of disciplines.
Grade Five Competition from the Leningrad Mathematical Olympiad
Author: Kseniya Garaschuk
Publisher: Springer Nature
ISBN: 3030529460
Category : Mathematics
Languages : en
Pages : 168
Book Description
This unique book presents mathematical competition problems primarily aimed at upper elementary school students, but are challenging for students at any age. These problems are drawn from the complete papers of the legendary Leningrad Mathematical Olympiads that were presented to the city’s Grade Five students. The period covered is between 1979 – the earliest year for which relevant records could be retrieved – and 1992, when the former Soviet Union was dissolved. The respective chapters reflect the famous four-step approach to problem solving developed by the great Hungarian mathematics educator Gyorgy Pólya. In Chapter One, the Grade Five Competition problems from the Leningrad Mathematical Olympiads from 1979 to 1992 are presented in chronological order. In Chapter Two, the 83 problems are loosely divided into 26 sets of three or four related problems, and an example is provided for each one. Chapter Three provides full solutions to all problems, while Chapter Four offers generalizations of the problems. This book can be used by any mathematically advanced student at the upper elementary school level. Teachers and organizers of outreach activities such as mathematical circles will also find this book useful. But the primary value of the book lies in the problems themselves, which were crafted by experts; therefore, anyone interested in problem solving will find this book a welcome addition to their library./div
Publisher: Springer Nature
ISBN: 3030529460
Category : Mathematics
Languages : en
Pages : 168
Book Description
This unique book presents mathematical competition problems primarily aimed at upper elementary school students, but are challenging for students at any age. These problems are drawn from the complete papers of the legendary Leningrad Mathematical Olympiads that were presented to the city’s Grade Five students. The period covered is between 1979 – the earliest year for which relevant records could be retrieved – and 1992, when the former Soviet Union was dissolved. The respective chapters reflect the famous four-step approach to problem solving developed by the great Hungarian mathematics educator Gyorgy Pólya. In Chapter One, the Grade Five Competition problems from the Leningrad Mathematical Olympiads from 1979 to 1992 are presented in chronological order. In Chapter Two, the 83 problems are loosely divided into 26 sets of three or four related problems, and an example is provided for each one. Chapter Three provides full solutions to all problems, while Chapter Four offers generalizations of the problems. This book can be used by any mathematically advanced student at the upper elementary school level. Teachers and organizers of outreach activities such as mathematical circles will also find this book useful. But the primary value of the book lies in the problems themselves, which were crafted by experts; therefore, anyone interested in problem solving will find this book a welcome addition to their library./div
The Colorado Mathematical Olympiad: The Third Decade and Further Explorations
Author: Alexander Soifer
Publisher: Springer
ISBN: 3319528610
Category : Mathematics
Languages : en
Pages : 290
Book Description
Now in its third decade, the Colorado Mathematical Olympiad (CMO), founded by the author, has become an annual state-wide competition, hosting many hundreds of middle and high school contestants each year. This book presents a year-by-year history of the CMO from 2004–2013 with all the problems from the competitions and their solutions. Additionally, the book includes 10 further explorations, bridges from solved Olympiad problems to ‘real’ mathematics, bringing young readers to the forefront of various fields of mathematics. This book contains more than just problems, solutions, and event statistics — it tells a compelling story involving the lives of those who have been part of the Olympiad, their reminiscences of the past and successes of the present. I am almost speechless facing the ingenuity and inventiveness demonstrated in the problems proposed in the third decade of these Olympics. However, equally impressive is the drive and persistence of the originator and living soul of them. It is hard for me to imagine the enthusiasm and commitment needed to work singlehandedly on such an endeavor over several decades. —Branko Grünbaum, University of Washingtonp/ppiAfter decades of hunting for Olympiad problems, and struggling to create Olympiad problems, he has become an extraordinary connoisseur and creator of Olympiad problems. The Olympiad problems were very good, from the beginning, but in the third decade the problems have become extraordinarily good. Every brace of 5 problems is a work of art. The harder individual problems range in quality from brilliant to work-of-genius... The same goes for the “Further Explorations” part of the book. Great mathematics and mathematical questions are immersed in a sauce of fascinating anecdote and reminiscence. If you could have only one book to enjoy while stranded on a desert island, this would be a good choice. /ii/i/psup/supp/ppiLike Gauss, Alexander Soifer would not hesitate to inject Eureka! at the right moment. Like van der Waerden, he can transform a dispassionate exercise in logic into a compelling account of sudden insights and ultimate triumph./ii/i/pp— Cecil Rousseau Chair, USA Mathematical Olympiad Committee/ppiA delightful feature of the book is that in the second part more related problems are discussed. Some of them are still unsolved./ii/i/pp—Paul Erdős/ppiThe book is a gold mine of brilliant reasoning with special emphasis on the power and beauty of coloring proofs. Strongly recommended to both serious and recreational mathematicians on all levels of expertise./i/p —Martin Gardner
Publisher: Springer
ISBN: 3319528610
Category : Mathematics
Languages : en
Pages : 290
Book Description
Now in its third decade, the Colorado Mathematical Olympiad (CMO), founded by the author, has become an annual state-wide competition, hosting many hundreds of middle and high school contestants each year. This book presents a year-by-year history of the CMO from 2004–2013 with all the problems from the competitions and their solutions. Additionally, the book includes 10 further explorations, bridges from solved Olympiad problems to ‘real’ mathematics, bringing young readers to the forefront of various fields of mathematics. This book contains more than just problems, solutions, and event statistics — it tells a compelling story involving the lives of those who have been part of the Olympiad, their reminiscences of the past and successes of the present. I am almost speechless facing the ingenuity and inventiveness demonstrated in the problems proposed in the third decade of these Olympics. However, equally impressive is the drive and persistence of the originator and living soul of them. It is hard for me to imagine the enthusiasm and commitment needed to work singlehandedly on such an endeavor over several decades. —Branko Grünbaum, University of Washingtonp/ppiAfter decades of hunting for Olympiad problems, and struggling to create Olympiad problems, he has become an extraordinary connoisseur and creator of Olympiad problems. The Olympiad problems were very good, from the beginning, but in the third decade the problems have become extraordinarily good. Every brace of 5 problems is a work of art. The harder individual problems range in quality from brilliant to work-of-genius... The same goes for the “Further Explorations” part of the book. Great mathematics and mathematical questions are immersed in a sauce of fascinating anecdote and reminiscence. If you could have only one book to enjoy while stranded on a desert island, this would be a good choice. /ii/i/psup/supp/ppiLike Gauss, Alexander Soifer would not hesitate to inject Eureka! at the right moment. Like van der Waerden, he can transform a dispassionate exercise in logic into a compelling account of sudden insights and ultimate triumph./ii/i/pp— Cecil Rousseau Chair, USA Mathematical Olympiad Committee/ppiA delightful feature of the book is that in the second part more related problems are discussed. Some of them are still unsolved./ii/i/pp—Paul Erdős/ppiThe book is a gold mine of brilliant reasoning with special emphasis on the power and beauty of coloring proofs. Strongly recommended to both serious and recreational mathematicians on all levels of expertise./i/p —Martin Gardner
Creative Problem Solving in School Mathematics
Author: George Lenchner
Publisher:
ISBN: 9780975731611
Category : Australian Primary Schools Mathematical Olympiad
Languages : en
Pages : 281
Book Description
Publisher:
ISBN: 9780975731611
Category : Australian Primary Schools Mathematical Olympiad
Languages : en
Pages : 281
Book Description