Author: Anvarbek Meirmanov
Publisher: Springer Science & Business Media
ISBN: 9462390150
Category : Mathematics
Languages : en
Pages : 477
Book Description
The book is devoted to rigorous derivation of macroscopic mathematical models as a homogenization of exact mathematical models at the microscopic level. The idea is quite natural: one first must describe the joint motion of the elastic skeleton and the fluid in pores at the microscopic level by means of classical continuum mechanics, and then use homogenization to find appropriate approximation models (homogenized equations). The Navier-Stokes equations still hold at this scale of the pore size in the order of 5 – 15 microns. Thus, as we have mentioned above, the macroscopic mathematical models obtained are still within the limits of physical applicability. These mathematical models describe different physical processes of liquid filtration and acoustics in poroelastic media, such as isothermal or non-isothermal filtration, hydraulic shock, isothermal or non-isothermal acoustics, diffusion-convection, filtration and acoustics in composite media or in porous fractured reservoirs. Our research is based upon the Nguetseng two-scale convergent method.
Mathematical Models for Poroelastic Flows
Author: Anvarbek Meirmanov
Publisher: Springer Science & Business Media
ISBN: 9462390150
Category : Mathematics
Languages : en
Pages : 477
Book Description
The book is devoted to rigorous derivation of macroscopic mathematical models as a homogenization of exact mathematical models at the microscopic level. The idea is quite natural: one first must describe the joint motion of the elastic skeleton and the fluid in pores at the microscopic level by means of classical continuum mechanics, and then use homogenization to find appropriate approximation models (homogenized equations). The Navier-Stokes equations still hold at this scale of the pore size in the order of 5 – 15 microns. Thus, as we have mentioned above, the macroscopic mathematical models obtained are still within the limits of physical applicability. These mathematical models describe different physical processes of liquid filtration and acoustics in poroelastic media, such as isothermal or non-isothermal filtration, hydraulic shock, isothermal or non-isothermal acoustics, diffusion-convection, filtration and acoustics in composite media or in porous fractured reservoirs. Our research is based upon the Nguetseng two-scale convergent method.
Publisher: Springer Science & Business Media
ISBN: 9462390150
Category : Mathematics
Languages : en
Pages : 477
Book Description
The book is devoted to rigorous derivation of macroscopic mathematical models as a homogenization of exact mathematical models at the microscopic level. The idea is quite natural: one first must describe the joint motion of the elastic skeleton and the fluid in pores at the microscopic level by means of classical continuum mechanics, and then use homogenization to find appropriate approximation models (homogenized equations). The Navier-Stokes equations still hold at this scale of the pore size in the order of 5 – 15 microns. Thus, as we have mentioned above, the macroscopic mathematical models obtained are still within the limits of physical applicability. These mathematical models describe different physical processes of liquid filtration and acoustics in poroelastic media, such as isothermal or non-isothermal filtration, hydraulic shock, isothermal or non-isothermal acoustics, diffusion-convection, filtration and acoustics in composite media or in porous fractured reservoirs. Our research is based upon the Nguetseng two-scale convergent method.
Mathematical and Numerical Modeling in Porous Media
Author: Martin A. Diaz Viera
Publisher: CRC Press
ISBN: 0203113888
Category : Mathematics
Languages : en
Pages : 370
Book Description
Porous media are broadly found in nature and their study is of high relevance in our present lives. In geosciences porous media research is fundamental in applications to aquifers, mineral mines, contaminant transport, soil remediation, waste storage, oil recovery and geothermal energy deposits. Despite their importance, there is as yet no complete
Publisher: CRC Press
ISBN: 0203113888
Category : Mathematics
Languages : en
Pages : 370
Book Description
Porous media are broadly found in nature and their study is of high relevance in our present lives. In geosciences porous media research is fundamental in applications to aquifers, mineral mines, contaminant transport, soil remediation, waste storage, oil recovery and geothermal energy deposits. Despite their importance, there is as yet no complete
Mathematical Modelling Of Flow Through Porous Media - Proceedings Of The Conference
Author: Alain P Bourgeat
Publisher: World Scientific
ISBN: 9814548391
Category :
Languages : en
Pages : 534
Book Description
This proceedings volume contains contributions from leading scientists working on modelling and numerical simulation of flows through porous media and on mathematical analysis of the equations associated to the modelling. There is a number of contributions on rigorous results for stochastic media and for applications to numerical simulations. Modelling and simulation of environment and pollution are also subject of several papers. The published material herein gives an insight to the state of the art in the field with special attention for rigorous discussions and results.
Publisher: World Scientific
ISBN: 9814548391
Category :
Languages : en
Pages : 534
Book Description
This proceedings volume contains contributions from leading scientists working on modelling and numerical simulation of flows through porous media and on mathematical analysis of the equations associated to the modelling. There is a number of contributions on rigorous results for stochastic media and for applications to numerical simulations. Modelling and simulation of environment and pollution are also subject of several papers. The published material herein gives an insight to the state of the art in the field with special attention for rigorous discussions and results.
Extended Finite Element Method
Author: Amir R. Khoei
Publisher: John Wiley & Sons
ISBN: 1118457684
Category : Science
Languages : en
Pages : 600
Book Description
Introduces the theory and applications of the extended finite element method (XFEM) in the linear and nonlinear problems of continua, structures and geomechanics Explores the concept of partition of unity, various enrichment functions, and fundamentals of XFEM formulation. Covers numerous applications of XFEM including fracture mechanics, large deformation, plasticity, multiphase flow, hydraulic fracturing and contact problems Accompanied by a website hosting source code and examples
Publisher: John Wiley & Sons
ISBN: 1118457684
Category : Science
Languages : en
Pages : 600
Book Description
Introduces the theory and applications of the extended finite element method (XFEM) in the linear and nonlinear problems of continua, structures and geomechanics Explores the concept of partition of unity, various enrichment functions, and fundamentals of XFEM formulation. Covers numerous applications of XFEM including fracture mechanics, large deformation, plasticity, multiphase flow, hydraulic fracturing and contact problems Accompanied by a website hosting source code and examples
Introduction to the Numerical Modeling of Groundwater and Geothermal Systems
Author: Jochen Bundschuh
Publisher: CRC Press
ISBN: 0203848101
Category : Mathematics
Languages : en
Pages : 522
Book Description
This book provides an introduction to the scientific fundamentals of groundwater and geothermal systems. In a simple and didactic manner the different water and energy problems existing in deformable porous rocks are explained as well as the corresponding theories and the mathematical and numerical tools that lead to modeling and solving them. This
Publisher: CRC Press
ISBN: 0203848101
Category : Mathematics
Languages : en
Pages : 522
Book Description
This book provides an introduction to the scientific fundamentals of groundwater and geothermal systems. In a simple and didactic manner the different water and energy problems existing in deformable porous rocks are explained as well as the corresponding theories and the mathematical and numerical tools that lead to modeling and solving them. This
Mathematical and Numerical Modeling in Porous Media
Author: Martin A. Diaz Viera
Publisher: CRC Press
ISBN: 041566537X
Category : Mathematics
Languages : en
Pages : 372
Book Description
Porous media are broadly found in nature and their study is of high relevance in our present lives. In geosciences porous media research is fundamental in applications to aquifers, mineral mines, contaminant transport, soil remediation, waste storage, oil recovery and geothermal energy deposits. Despite their importance, there is as yet no complete understanding of the physical processes involved in fluid flow and transport. This fact can be attributed to the complexity of the phenomena which include multicomponent fluids, multiphasic flow and rock-fluid interactions. Since its formulation in 1856, Darcy’s law has been generalized to describe multi-phase compressible fluid flow through anisotropic and heterogeneous porous and fractured rocks. Due to the scarcity of information, a high degree of uncertainty on the porous medium properties is commonly present. Contributions to the knowledge of modeling flow and transport, as well as to the characterization of porous media at field scale are of great relevance. This book addresses several of these issues, treated with a variety of methodologies grouped into four parts: I Fundamental concepts II Flow and transport III Statistical and stochastic characterization IV Waves The problems analyzed in this book cover diverse length scales that range from small rock samples to field-size porous formations. They belong to the most active areas of research in porous media with applications in geosciences developed by diverse authors. This book was written for a broad audience with a prior and basic knowledge of porous media. The book is addressed to a wide readership, and it will be useful not only as an authoritative textbook for undergraduate and graduate students but also as a reference source for professionals including geoscientists, hydrogeologists, geophysicists, engineers, applied mathematicians and others working on porous media.
Publisher: CRC Press
ISBN: 041566537X
Category : Mathematics
Languages : en
Pages : 372
Book Description
Porous media are broadly found in nature and their study is of high relevance in our present lives. In geosciences porous media research is fundamental in applications to aquifers, mineral mines, contaminant transport, soil remediation, waste storage, oil recovery and geothermal energy deposits. Despite their importance, there is as yet no complete understanding of the physical processes involved in fluid flow and transport. This fact can be attributed to the complexity of the phenomena which include multicomponent fluids, multiphasic flow and rock-fluid interactions. Since its formulation in 1856, Darcy’s law has been generalized to describe multi-phase compressible fluid flow through anisotropic and heterogeneous porous and fractured rocks. Due to the scarcity of information, a high degree of uncertainty on the porous medium properties is commonly present. Contributions to the knowledge of modeling flow and transport, as well as to the characterization of porous media at field scale are of great relevance. This book addresses several of these issues, treated with a variety of methodologies grouped into four parts: I Fundamental concepts II Flow and transport III Statistical and stochastic characterization IV Waves The problems analyzed in this book cover diverse length scales that range from small rock samples to field-size porous formations. They belong to the most active areas of research in porous media with applications in geosciences developed by diverse authors. This book was written for a broad audience with a prior and basic knowledge of porous media. The book is addressed to a wide readership, and it will be useful not only as an authoritative textbook for undergraduate and graduate students but also as a reference source for professionals including geoscientists, hydrogeologists, geophysicists, engineers, applied mathematicians and others working on porous media.
Modeling Density-Driven Flow in Porous Media
Author: Ekkehard O. Holzbecher
Publisher: Springer Science & Business Media
ISBN: 9783540636779
Category : Science
Languages : en
Pages : 308
Book Description
Modeling of flow and transport in groundwater has become an important focus of scientific research in recent years. Most contributions to this subject deal with flow situations, where density and viscosity changes in the fluid are neglected. This restriction may not always be justified. The models presented in the book demonstrate immpressingly that the flow pattern may be completely different when density changes are taken into account. The main applications of the models are: thermal and saline convection, geothermal flow, saltwater intrusion, flow through salt formations etc. This book not only presents basic theory, but the reader can also test his knowledge by applying the included software and can set up own models.
Publisher: Springer Science & Business Media
ISBN: 9783540636779
Category : Science
Languages : en
Pages : 308
Book Description
Modeling of flow and transport in groundwater has become an important focus of scientific research in recent years. Most contributions to this subject deal with flow situations, where density and viscosity changes in the fluid are neglected. This restriction may not always be justified. The models presented in the book demonstrate immpressingly that the flow pattern may be completely different when density changes are taken into account. The main applications of the models are: thermal and saline convection, geothermal flow, saltwater intrusion, flow through salt formations etc. This book not only presents basic theory, but the reader can also test his knowledge by applying the included software and can set up own models.
Homogenization and Porous Media
Author: Ulrich Hornung
Publisher: Springer Science & Business Media
ISBN: 1461219205
Category : Mathematics
Languages : en
Pages : 290
Book Description
This book offers a systematic, rigorous treatment of upscaling procedures related to physical modeling for porous media on micro-, meso- and macro-scales, including detailed studies of micro-structure systems and computational results for dual-porosity models.
Publisher: Springer Science & Business Media
ISBN: 1461219205
Category : Mathematics
Languages : en
Pages : 290
Book Description
This book offers a systematic, rigorous treatment of upscaling procedures related to physical modeling for porous media on micro-, meso- and macro-scales, including detailed studies of micro-structure systems and computational results for dual-porosity models.
Mathematical Modeling of Fluid Flow and Heat Transfer in Petroleum Industries and Geothermal Applications
Author: Mehrdad Massoudi
Publisher: MDPI
ISBN: 3039287206
Category : Technology & Engineering
Languages : en
Pages : 470
Book Description
Geothermal energy is the thermal energy generated and stored in the Earth's core, mantle, and crust. Geothermal technologies are used to generate electricity and to heat and cool buildings. To develop accurate models for heat and mass transfer applications involving fluid flow in geothermal applications or reservoir engineering and petroleum industries, a basic knowledge of the rheological and transport properties of the materials involved (drilling fluid, rock properties, etc.)—especially in high-temperature and high-pressure environments—are needed. This Special Issue considers all aspects of fluid flow and heat transfer in geothermal applications, including the ground heat exchanger, conduction and convection in porous media. The emphasis here is on mathematical and computational aspects of fluid flow in conventional and unconventional reservoirs, geothermal engineering, fluid flow, and heat transfer in drilling engineering and enhanced oil recovery (hydraulic fracturing, CO2 injection, etc.) applications.
Publisher: MDPI
ISBN: 3039287206
Category : Technology & Engineering
Languages : en
Pages : 470
Book Description
Geothermal energy is the thermal energy generated and stored in the Earth's core, mantle, and crust. Geothermal technologies are used to generate electricity and to heat and cool buildings. To develop accurate models for heat and mass transfer applications involving fluid flow in geothermal applications or reservoir engineering and petroleum industries, a basic knowledge of the rheological and transport properties of the materials involved (drilling fluid, rock properties, etc.)—especially in high-temperature and high-pressure environments—are needed. This Special Issue considers all aspects of fluid flow and heat transfer in geothermal applications, including the ground heat exchanger, conduction and convection in porous media. The emphasis here is on mathematical and computational aspects of fluid flow in conventional and unconventional reservoirs, geothermal engineering, fluid flow, and heat transfer in drilling engineering and enhanced oil recovery (hydraulic fracturing, CO2 injection, etc.) applications.
The Mathematics of Reservoir Simulation
Author: Richard E. Ewing
Publisher: SIAM
ISBN: 0898716624
Category : Science
Languages : en
Pages : 195
Book Description
This book describes the state of the art of the mathematical theory and numerical analysis of imaging. Some of the applications covered in the book include computerized tomography, magnetic resonance imaging, emission tomography, electron microscopy, ultrasound transmission tomography, industrial tomography, seismic tomography, impedance tomography, and NIR imaging.
Publisher: SIAM
ISBN: 0898716624
Category : Science
Languages : en
Pages : 195
Book Description
This book describes the state of the art of the mathematical theory and numerical analysis of imaging. Some of the applications covered in the book include computerized tomography, magnetic resonance imaging, emission tomography, electron microscopy, ultrasound transmission tomography, industrial tomography, seismic tomography, impedance tomography, and NIR imaging.