Author: Frank Natterer
Publisher: SIAM
ISBN: 0898716225
Category : Computers
Languages : en
Pages : 226
Book Description
This book provides readers with a superior understanding of the mathematical principles behind imaging.
Mathematical Methods in Image Reconstruction
Author: Frank Natterer
Publisher: SIAM
ISBN: 0898716225
Category : Computers
Languages : en
Pages : 226
Book Description
This book provides readers with a superior understanding of the mathematical principles behind imaging.
Publisher: SIAM
ISBN: 0898716225
Category : Computers
Languages : en
Pages : 226
Book Description
This book provides readers with a superior understanding of the mathematical principles behind imaging.
Handbook of Mathematical Models and Algorithms in Computer Vision and Imaging
Author: Ke Chen
Publisher:
ISBN: 9783030030094
Category : Computer algorithms
Languages : en
Pages :
Book Description
Publisher:
ISBN: 9783030030094
Category : Computer algorithms
Languages : en
Pages :
Book Description
Handbook of Mathematical Models and Algorithms in Computer Vision and Imaging
Author: Ke Chen
Publisher: Springer Nature
ISBN: 3030986616
Category : Mathematics
Languages : en
Pages : 1981
Book Description
This handbook gathers together the state of the art on mathematical models and algorithms for imaging and vision. Its emphasis lies on rigorous mathematical methods, which represent the optimal solutions to a class of imaging and vision problems, and on effective algorithms, which are necessary for the methods to be translated to practical use in various applications. Viewing discrete images as data sampled from functional surfaces enables the use of advanced tools from calculus, functions and calculus of variations, and nonlinear optimization, and provides the basis of high-resolution imaging through geometry and variational models. Besides, optimization naturally connects traditional model-driven approaches to the emerging data-driven approaches of machine and deep learning. No other framework can provide comparable accuracy and precision to imaging and vision. Written by leading researchers in imaging and vision, the chapters in this handbook all start with gentle introductions, which make this work accessible to graduate students. For newcomers to the field, the book provides a comprehensive and fast-track introduction to the content, to save time and get on with tackling new and emerging challenges. For researchers, exposure to the state of the art of research works leads to an overall view of the entire field so as to guide new research directions and avoid pitfalls in moving the field forward and looking into the next decades of imaging and information services. This work can greatly benefit graduate students, researchers, and practitioners in imaging and vision; applied mathematicians; medical imagers; engineers; and computer scientists.
Publisher: Springer Nature
ISBN: 3030986616
Category : Mathematics
Languages : en
Pages : 1981
Book Description
This handbook gathers together the state of the art on mathematical models and algorithms for imaging and vision. Its emphasis lies on rigorous mathematical methods, which represent the optimal solutions to a class of imaging and vision problems, and on effective algorithms, which are necessary for the methods to be translated to practical use in various applications. Viewing discrete images as data sampled from functional surfaces enables the use of advanced tools from calculus, functions and calculus of variations, and nonlinear optimization, and provides the basis of high-resolution imaging through geometry and variational models. Besides, optimization naturally connects traditional model-driven approaches to the emerging data-driven approaches of machine and deep learning. No other framework can provide comparable accuracy and precision to imaging and vision. Written by leading researchers in imaging and vision, the chapters in this handbook all start with gentle introductions, which make this work accessible to graduate students. For newcomers to the field, the book provides a comprehensive and fast-track introduction to the content, to save time and get on with tackling new and emerging challenges. For researchers, exposure to the state of the art of research works leads to an overall view of the entire field so as to guide new research directions and avoid pitfalls in moving the field forward and looking into the next decades of imaging and information services. This work can greatly benefit graduate students, researchers, and practitioners in imaging and vision; applied mathematicians; medical imagers; engineers; and computer scientists.
Introduction to the Mathematics of Medical Imaging
Author: Charles L. Epstein
Publisher: SIAM
ISBN: 9780898717792
Category : Mathematics
Languages : en
Pages : 794
Book Description
At the heart of every medical imaging technology is a sophisticated mathematical model of the measurement process and an algorithm to reconstruct an image from the measured data. This book provides a firm foundation in the mathematical tools used to model the measurements and derive the reconstruction algorithms used in most of these modalities. The text uses X-ray computed tomography (X-ray CT) as a 'pedagogical machine' to illustrate important ideas and its extensive discussion of background material makes the more advanced mathematical topics accessible to people with a less formal mathematical education. This new edition contains a chapter on magnetic resonance imaging (MRI), a revised section on the relationship between the continuum and discrete Fourier transforms, an improved description of the gridding method, and new sections on both Grangreat's formula and noise analysis in MR-imaging. Mathematical concepts are illuminated with over 200 illustrations and numerous exercises.
Publisher: SIAM
ISBN: 9780898717792
Category : Mathematics
Languages : en
Pages : 794
Book Description
At the heart of every medical imaging technology is a sophisticated mathematical model of the measurement process and an algorithm to reconstruct an image from the measured data. This book provides a firm foundation in the mathematical tools used to model the measurements and derive the reconstruction algorithms used in most of these modalities. The text uses X-ray computed tomography (X-ray CT) as a 'pedagogical machine' to illustrate important ideas and its extensive discussion of background material makes the more advanced mathematical topics accessible to people with a less formal mathematical education. This new edition contains a chapter on magnetic resonance imaging (MRI), a revised section on the relationship between the continuum and discrete Fourier transforms, an improved description of the gridding method, and new sections on both Grangreat's formula and noise analysis in MR-imaging. Mathematical concepts are illuminated with over 200 illustrations and numerous exercises.
Numerical Algorithms
Author: Justin Solomon
Publisher: CRC Press
ISBN: 1482251892
Category : Computers
Languages : en
Pages : 400
Book Description
Numerical Algorithms: Methods for Computer Vision, Machine Learning, and Graphics presents a new approach to numerical analysis for modern computer scientists. Using examples from a broad base of computational tasks, including data processing, computational photography, and animation, the textbook introduces numerical modeling and algorithmic desig
Publisher: CRC Press
ISBN: 1482251892
Category : Computers
Languages : en
Pages : 400
Book Description
Numerical Algorithms: Methods for Computer Vision, Machine Learning, and Graphics presents a new approach to numerical analysis for modern computer scientists. Using examples from a broad base of computational tasks, including data processing, computational photography, and animation, the textbook introduces numerical modeling and algorithmic desig
Image Processing and Analysis
Author: Tony F. Chan
Publisher: SIAM
ISBN: 089871589X
Category : Computers
Languages : en
Pages : 414
Book Description
This book develops the mathematical foundation of modern image processing and low-level computer vision, bridging contemporary mathematics with state-of-the-art methodologies in modern image processing, whilst organizing contemporary literature into a coherent and logical structure. The authors have integrated the diversity of modern image processing approaches by revealing the few common threads that connect them to Fourier and spectral analysis, the machinery that image processing has been traditionally built on. The text is systematic and well organized: the geometric, functional, and atomic structures of images are investigated, before moving to a rigorous development and analysis of several image processors. The book is comprehensive and integrative, covering the four most powerful classes of mathematical tools in contemporary image analysis and processing while exploring their intrinsic connections and integration. The material is balanced in theory and computation, following a solid theoretical analysis of model building and performance with computational implementation and numerical examples.
Publisher: SIAM
ISBN: 089871589X
Category : Computers
Languages : en
Pages : 414
Book Description
This book develops the mathematical foundation of modern image processing and low-level computer vision, bridging contemporary mathematics with state-of-the-art methodologies in modern image processing, whilst organizing contemporary literature into a coherent and logical structure. The authors have integrated the diversity of modern image processing approaches by revealing the few common threads that connect them to Fourier and spectral analysis, the machinery that image processing has been traditionally built on. The text is systematic and well organized: the geometric, functional, and atomic structures of images are investigated, before moving to a rigorous development and analysis of several image processors. The book is comprehensive and integrative, covering the four most powerful classes of mathematical tools in contemporary image analysis and processing while exploring their intrinsic connections and integration. The material is balanced in theory and computation, following a solid theoretical analysis of model building and performance with computational implementation and numerical examples.
Statistical Image Processing and Multidimensional Modeling
Author: Paul Fieguth
Publisher: Springer Science & Business Media
ISBN: 1441972943
Category : Mathematics
Languages : en
Pages : 465
Book Description
Images are all around us! The proliferation of low-cost, high-quality imaging devices has led to an explosion in acquired images. When these images are acquired from a microscope, telescope, satellite, or medical imaging device, there is a statistical image processing task: the inference of something—an artery, a road, a DNA marker, an oil spill—from imagery, possibly noisy, blurry, or incomplete. A great many textbooks have been written on image processing. However this book does not so much focus on images, per se, but rather on spatial data sets, with one or more measurements taken over a two or higher dimensional space, and to which standard image-processing algorithms may not apply. There are many important data analysis methods developed in this text for such statistical image problems. Examples abound throughout remote sensing (satellite data mapping, data assimilation, climate-change studies, land use), medical imaging (organ segmentation, anomaly detection), computer vision (image classification, segmentation), and other 2D/3D problems (biological imaging, porous media). The goal, then, of this text is to address methods for solving multidimensional statistical problems. The text strikes a balance between mathematics and theory on the one hand, versus applications and algorithms on the other, by deliberately developing the basic theory (Part I), the mathematical modeling (Part II), and the algorithmic and numerical methods (Part III) of solving a given problem. The particular emphases of the book include inverse problems, multidimensional modeling, random fields, and hierarchical methods.
Publisher: Springer Science & Business Media
ISBN: 1441972943
Category : Mathematics
Languages : en
Pages : 465
Book Description
Images are all around us! The proliferation of low-cost, high-quality imaging devices has led to an explosion in acquired images. When these images are acquired from a microscope, telescope, satellite, or medical imaging device, there is a statistical image processing task: the inference of something—an artery, a road, a DNA marker, an oil spill—from imagery, possibly noisy, blurry, or incomplete. A great many textbooks have been written on image processing. However this book does not so much focus on images, per se, but rather on spatial data sets, with one or more measurements taken over a two or higher dimensional space, and to which standard image-processing algorithms may not apply. There are many important data analysis methods developed in this text for such statistical image problems. Examples abound throughout remote sensing (satellite data mapping, data assimilation, climate-change studies, land use), medical imaging (organ segmentation, anomaly detection), computer vision (image classification, segmentation), and other 2D/3D problems (biological imaging, porous media). The goal, then, of this text is to address methods for solving multidimensional statistical problems. The text strikes a balance between mathematics and theory on the one hand, versus applications and algorithms on the other, by deliberately developing the basic theory (Part I), the mathematical modeling (Part II), and the algorithmic and numerical methods (Part III) of solving a given problem. The particular emphases of the book include inverse problems, multidimensional modeling, random fields, and hierarchical methods.
Mathematical Models for Registration and Applications to Medical Imaging
Author: Otmar Scherzer
Publisher: Springer Science & Business Media
ISBN: 3540347674
Category : Mathematics
Languages : en
Pages : 192
Book Description
This volume gives a survey on mathematical and computational methods in image registration. During the last year sophisticated numerical models for registration and efficient numerical methods have been proposed. Many of them are contained in this volume. The book also summarizes the state-of-the-art in mathematical and computational methods in image registration. In addition, it covers some practical applications and new directions with industrial relevance in data processing.
Publisher: Springer Science & Business Media
ISBN: 3540347674
Category : Mathematics
Languages : en
Pages : 192
Book Description
This volume gives a survey on mathematical and computational methods in image registration. During the last year sophisticated numerical models for registration and efficient numerical methods have been proposed. Many of them are contained in this volume. The book also summarizes the state-of-the-art in mathematical and computational methods in image registration. In addition, it covers some practical applications and new directions with industrial relevance in data processing.
Handbook of Mathematical Models in Computer Vision
Author: Nikos Paragios
Publisher: Springer Science & Business Media
ISBN: 0387288317
Category : Computers
Languages : en
Pages : 612
Book Description
Abstract Biological vision is a rather fascinating domain of research. Scientists of various origins like biology, medicine, neurophysiology, engineering, math ematics, etc. aim to understand the processes leading to visual perception process and at reproducing such systems. Understanding the environment is most of the time done through visual perception which appears to be one of the most fundamental sensory abilities in humans and therefore a significant amount of research effort has been dedicated towards modelling and repro ducing human visual abilities. Mathematical methods play a central role in this endeavour. Introduction David Marr's theory v^as a pioneering step tov^ards understanding visual percep tion. In his view human vision was based on a complete surface reconstruction of the environment that was then used to address visual subtasks. This approach was proven to be insufficient by neuro-biologists and complementary ideas from statistical pattern recognition and artificial intelligence were introduced to bet ter address the visual perception problem. In this framework visual perception is represented by a set of actions and rules connecting these actions. The emerg ing concept of active vision consists of a selective visual perception paradigm that is basically equivalent to recovering from the environment the minimal piece information required to address a particular task of interest.
Publisher: Springer Science & Business Media
ISBN: 0387288317
Category : Computers
Languages : en
Pages : 612
Book Description
Abstract Biological vision is a rather fascinating domain of research. Scientists of various origins like biology, medicine, neurophysiology, engineering, math ematics, etc. aim to understand the processes leading to visual perception process and at reproducing such systems. Understanding the environment is most of the time done through visual perception which appears to be one of the most fundamental sensory abilities in humans and therefore a significant amount of research effort has been dedicated towards modelling and repro ducing human visual abilities. Mathematical methods play a central role in this endeavour. Introduction David Marr's theory v^as a pioneering step tov^ards understanding visual percep tion. In his view human vision was based on a complete surface reconstruction of the environment that was then used to address visual subtasks. This approach was proven to be insufficient by neuro-biologists and complementary ideas from statistical pattern recognition and artificial intelligence were introduced to bet ter address the visual perception problem. In this framework visual perception is represented by a set of actions and rules connecting these actions. The emerg ing concept of active vision consists of a selective visual perception paradigm that is basically equivalent to recovering from the environment the minimal piece information required to address a particular task of interest.
Computer Vision and Mathematical Methods in Medical and Biomedical Image Analysis
Author: Milan Sonka
Publisher: Springer
ISBN: 3540278168
Category : Computers
Languages : en
Pages : 448
Book Description
Medical imaging and medical image analysisare rapidly developing. While m- ical imaging has already become a standard of modern medical care, medical image analysis is still mostly performed visually and qualitatively. The ev- increasing volume of acquired data makes it impossible to utilize them in full. Equally important, the visual approaches to medical image analysis are known to su?er from a lack of reproducibility. A signi?cant researche?ort is devoted to developing algorithms for processing the wealth of data available and extracting the relevant information in a computerized and quantitative fashion. Medical imaging and image analysis are interdisciplinary areas combining electrical, computer, and biomedical engineering; computer science; mathem- ics; physics; statistics; biology; medicine; and other ?elds. Medical imaging and computer vision, interestingly enough, have developed and continue developing somewhat independently. Nevertheless, bringing them together promises to b- e?t both of these ?elds. We were enthusiastic when the organizers of the 2004 European Conference on Computer Vision (ECCV) allowed us to organize a satellite workshop devoted to medical image analysis.
Publisher: Springer
ISBN: 3540278168
Category : Computers
Languages : en
Pages : 448
Book Description
Medical imaging and medical image analysisare rapidly developing. While m- ical imaging has already become a standard of modern medical care, medical image analysis is still mostly performed visually and qualitatively. The ev- increasing volume of acquired data makes it impossible to utilize them in full. Equally important, the visual approaches to medical image analysis are known to su?er from a lack of reproducibility. A signi?cant researche?ort is devoted to developing algorithms for processing the wealth of data available and extracting the relevant information in a computerized and quantitative fashion. Medical imaging and image analysis are interdisciplinary areas combining electrical, computer, and biomedical engineering; computer science; mathem- ics; physics; statistics; biology; medicine; and other ?elds. Medical imaging and computer vision, interestingly enough, have developed and continue developing somewhat independently. Nevertheless, bringing them together promises to b- e?t both of these ?elds. We were enthusiastic when the organizers of the 2004 European Conference on Computer Vision (ECCV) allowed us to organize a satellite workshop devoted to medical image analysis.