Mathematical Modelling in Science and Technology PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Mathematical Modelling in Science and Technology PDF full book. Access full book title Mathematical Modelling in Science and Technology by Xavier J.R. Avula. Download full books in PDF and EPUB format.

Mathematical Modelling in Science and Technology

Mathematical Modelling in Science and Technology PDF Author: Xavier J.R. Avula
Publisher: Elsevier
ISBN: 1483190595
Category : Mathematics
Languages : en
Pages : 1023

Book Description
Mathematical Modelling in Science and Technology: The Fourth International Conference covers the proceedings of the Fourth International Conference by the same title, held at the Swiss Federal Institute of Technology, Zurich, Switzerland on August 15-17, 1983. Mathematical modeling is a powerful tool to solve many complex problems presented by scientific and technological developments. This book is organized into 20 parts encompassing 180 chapters. The first parts present the basic principles, methodology, systems theory, parameter estimation, system identification, and optimization of mathematical modeling. The succeeding parts discuss the features of stochastic and numerical modeling and simulation languages. Considerable parts deal with the application areas of mathematical modeling, such as in chemical engineering, solid and fluid mechanics, water resources, medicine, economics, transportation, and industry. The last parts tackle the application of mathematical modeling in student management and other academic cases. This book will prove useful to researchers in various science and technology fields.

Mathematical Modelling in Science and Technology

Mathematical Modelling in Science and Technology PDF Author: Xavier J.R. Avula
Publisher: Elsevier
ISBN: 1483190595
Category : Mathematics
Languages : en
Pages : 1023

Book Description
Mathematical Modelling in Science and Technology: The Fourth International Conference covers the proceedings of the Fourth International Conference by the same title, held at the Swiss Federal Institute of Technology, Zurich, Switzerland on August 15-17, 1983. Mathematical modeling is a powerful tool to solve many complex problems presented by scientific and technological developments. This book is organized into 20 parts encompassing 180 chapters. The first parts present the basic principles, methodology, systems theory, parameter estimation, system identification, and optimization of mathematical modeling. The succeeding parts discuss the features of stochastic and numerical modeling and simulation languages. Considerable parts deal with the application areas of mathematical modeling, such as in chemical engineering, solid and fluid mechanics, water resources, medicine, economics, transportation, and industry. The last parts tackle the application of mathematical modeling in student management and other academic cases. This book will prove useful to researchers in various science and technology fields.

Mathematical Modeling in Science and Engineering

Mathematical Modeling in Science and Engineering PDF Author: Ismael Herrera
Publisher: John Wiley & Sons
ISBN: 1118207203
Category : Technology & Engineering
Languages : en
Pages : 259

Book Description
A powerful, unified approach to mathematical and computational modeling in science and engineering Mathematical and computational modeling makes it possible to predict the behavior of a broad range of systems across a broad range of disciplines. This text guides students and professionals through the axiomatic approach, a powerful method that will enable them to easily master the principle types of mathematical and computational models used in engineering and science. Readers will discover that this axiomatic approach not only enables them to systematically construct effective models, it also enables them to apply these models to any macroscopic physical system. Mathematical Modeling in Science and Engineering focuses on models in which the processes to be modeled are expressed as systems of partial differential equations. It begins with an introductory discussion of the axiomatic formulation of basic models, setting the foundation for further topics such as: Mechanics of classical and non-classical continuous systems Solute transport by a free fluid Flow of a fluid in a porous medium Multiphase systems Enhanced oil recovery Fluid mechanics Throughout the text, diagrams are provided to help readers visualize and better understand complex mathematical concepts. A set of exercises at the end of each chapter enables readers to put their new modeling skills into practice. There is also a bibliography in each chapter to facilitate further investigation of individual topics. Mathematical Modeling in Science and Engineering is ideal for both students and professionals across the many disciplines of science and engineering that depend on mathematical and computational modeling to predict and understand complex systems.

An Introduction to Mathematical Modeling

An Introduction to Mathematical Modeling PDF Author: Edward A. Bender
Publisher: Courier Corporation
ISBN: 0486137120
Category : Mathematics
Languages : en
Pages : 273

Book Description
Employing a practical, "learn by doing" approach, this first-rate text fosters the development of the skills beyond the pure mathematics needed to set up and manipulate mathematical models. The author draws on a diversity of fields — including science, engineering, and operations research — to provide over 100 reality-based examples. Students learn from the examples by applying mathematical methods to formulate, analyze, and criticize models. Extensive documentation, consisting of over 150 references, supplements the models, encouraging further research on models of particular interest. The lively and accessible text requires only minimal scientific background. Designed for senior college or beginning graduate-level students, it assumes only elementary calculus and basic probability theory for the first part, and ordinary differential equations and continuous probability for the second section. All problems require students to study and create models, encouraging their active participation rather than a mechanical approach. Beyond the classroom, this volume will prove interesting and rewarding to anyone concerned with the development of mathematical models or the application of modeling to problem solving in a wide array of applications.

Mathematics in Science and Technology

Mathematics in Science and Technology PDF Author: A H Siddiqi
Publisher: World Scientific
ISBN: 9814462144
Category : Mathematics
Languages : en
Pages : 556

Book Description
This unique volume presents reviews of research in several important areas of applications of mathematical concepts to science and technology, for example applications of inverse problems and wavelets to real world systems. The book provides a comprehensive overview of current research of several outstanding scholars engaged in diverse fields such as complexity theory, vertex coupling in quantum graphs, mixing of substances by turbulence, network dynamics and architecture, processes with rate — independent hysteresis, numerical analysis of Hamilton Jacobi — Bellman equations, simulations of complex stochastic differential equations, optimal flow control, shape optimal flow control, shape optimization and aircraft designing, mathematics of brain, nanotechnology and DNA structure and mathematical models of environmental problems. The volume also contains contributory talks based on current researches of comparatively young researchers participating in the conference. Contents:Part A Invited Talk:In Appreciation of Dr Zakir Husain Award (M Zuhair Nashed)Kinematical Conservation Laws (KCL): Equations of Evolution of Curves and Surfaces (K R Arun and P Prasad)Systematic Discretization of Input/Output Maps and Control of Partial Differential Equations (J Heiland, V Mehrmann and M Schmidt)Vertex Couplings in Quantum Graphs: Approximations by Scaled Schrödinger Operators (P Exner)Complexity Leads to Randomness in Chaotic Systems (R Lozi)Mathematical Modeling for Unifying Different Branches of Science, Engineering and Technology (N Rudraiah)On Equivalence Transformations and Exact Solutions of a Helmholtz Type Equation (O P Bhutani and L R Chowdhury)Cognitive Radio: State-of-the-Art and Mathematical Challenges (T Nadkar, V Thumar, A Patel, Md Z Ali Khan, U B Desai and S N Merchant)Part B Thematic Reviews:Inverse Problems of Parameter Identification in Partial Differential Equations (B Jadamba, A A Khan and M Sama)Finite Element Methods for HJB Equations (M Boulbrachene)Dynamics and Control of Underactuated Space Systems (K D Kumar and Godard)Some New Classes of Inverse Coefficient Problems in Engineering Mechanics and Computational Material Science Based on Boundary Measured Data (A Hasanov)Some Recent Developments on Mathematical Aspect of Wavelets (P Manchanda and Meenakshi)Relevance of Wavelets and Inverse Problems to Brain (A H Siddiqi, H K Sevindir, Z Aslan and C Yazici)Wavelets and Inverse Problems (K Goyal and M Mehra)Optimization Models for a Class of Structured Stochastic Games (S K Neogy, S Sinha, A K Das and A Gupta)Part C Contributory Talks:Predator-Prey Relations for Mammals where Prey Suppress Breeding (Q J Khan and M Al-Lawatia)SEI Model with Varying Transmission and Mortality Rates (G Rost)Trajectories and Stability Regions of the Lagrangian Points in the Generalized Chermnykh-Like Problem (B S Kushvah)MHD Flow Past an Infinite Plate Under the Effect of Gravity Modulation (S Wasu and S C Rajvanshi) Readership: Researchers in mathematical modeling, numerical analysis and computational mathematics. Keywords:Complexity Theory;Vertex Coupling in Quantum Graphs;Hamilton-Jacobi–Bellman Equation;Prey and Predator Model;Inverse Problems and Wavelets;Dynamics and Control of Under Actuated Space Systems

Mathematical Modelling

Mathematical Modelling PDF Author: J. Caldwell
Publisher: Springer Science & Business Media
ISBN: 1402019939
Category : Mathematics
Languages : en
Pages : 253

Book Description
Over the past decade there has been an increasing demand for suitable material in the area of mathematical modelling as applied to science, engineering, business and management. Recent developments in computer technology and related software have provided the necessary tools of increasing power and sophistication which have significant implications for the use and role of mathematical modelling in the above disciplines. In the past, traditional methods have relied heavily on expensive experimentation and the building of scaled models, but now a more flexible and cost effective approach is available through greater use of mathematical modelling and computer simulation. In particular, developments in computer algebra, symbolic manipulation packages and user friendly software packages for large scale problems, all have important implications in both the teaching of mathematical modelling and, more importantly, its use in the solution of real world problems. Many textbooks have been published which cover the art and techniques of modelling as well as specific mathematical modelling techniques in specialist areas within science and business. In most of these books the mathematical material tends to be rather tailor made to fit in with a one or two semester course for teaching students at the undergraduate or postgraduate level, usually the former. This textbook is quite different in that it is intended to build on and enhance students’ modelling skills using a combination of case studies and projects.

Mathematical Modeling in Social Sciences and Engineering

Mathematical Modeling in Social Sciences and Engineering PDF Author: Juan Carlos Cortés López
Publisher: Nova Science Publishers
ISBN: 9781631173356
Category : Engineering
Languages : en
Pages : 0

Book Description
This book is devoted to the power of mathematical modelling to give an answer to a broad diversity of real problems including medicine, finance, social behavioural problems and many engineering problems. Mathematical modelling in social sciences is very recent and comes with special challenges such as the difficulty to manage human behaviour, the role of the model hypothesis with the objectivity/subjectivity and the proper understanding of the conclusions. In this book, the reader will find several behavioural mathematical models that in fact may be understood as the so-called epidemiological models in the sense that they deal with populations instead of individuals.

Modelling and Mathematics Education

Modelling and Mathematics Education PDF Author: J F Matos
Publisher: Elsevier
ISBN: 0857099655
Category : Mathematics
Languages : en
Pages : 433

Book Description
The articles included in this book are from the ICTMA 9 conference held in Lisbon, attended by delegates from about 30 countries. This work records the 1999 Lisbon Conference of ICTMA. It contains the selected and edited content of the conference and makes a significant contribution to mathematical modelling which is the significant investigative preliminary to all scientific and technological applications from machinery to satellites and docking of space-ships. Contains the selected and edited content of the 1999 Lisbon Conference of ICTMA Makes a significant contribution to mathematical modelling, which is the significant investigative preliminary to all scientific and technological applications from machinery to satellites and docking of space-ships

Mathematical Modeling and Digital Simulation for Engineers and Scientists

Mathematical Modeling and Digital Simulation for Engineers and Scientists PDF Author: Jon M. Smith
Publisher: Wiley-Interscience
ISBN:
Category : Computers
Languages : en
Pages : 456

Book Description
Mathematical modeling preliminaries; Numerical methods for simulating linear systems on a digital computer; Numerical methods for simulating nonlinear systems on a digital computer; Simulating continuous random processes on a digital computer; Simulator verification; Fast function evaluation techniques.

Mathematical Modeling in Systems Biology

Mathematical Modeling in Systems Biology PDF Author: Brian P. Ingalls
Publisher: MIT Press
ISBN: 0262545829
Category : Science
Languages : en
Pages : 423

Book Description
An introduction to the mathematical concepts and techniques needed for the construction and analysis of models in molecular systems biology. Systems techniques are integral to current research in molecular cell biology, and system-level investigations are often accompanied by mathematical models. These models serve as working hypotheses: they help us to understand and predict the behavior of complex systems. This book offers an introduction to mathematical concepts and techniques needed for the construction and interpretation of models in molecular systems biology. It is accessible to upper-level undergraduate or graduate students in life science or engineering who have some familiarity with calculus, and will be a useful reference for researchers at all levels. The first four chapters cover the basics of mathematical modeling in molecular systems biology. The last four chapters address specific biological domains, treating modeling of metabolic networks, of signal transduction pathways, of gene regulatory networks, and of electrophysiology and neuronal action potentials. Chapters 3–8 end with optional sections that address more specialized modeling topics. Exercises, solvable with pen-and-paper calculations, appear throughout the text to encourage interaction with the mathematical techniques. More involved end-of-chapter problem sets require computational software. Appendixes provide a review of basic concepts of molecular biology, additional mathematical background material, and tutorials for two computational software packages (XPPAUT and MATLAB) that can be used for model simulation and analysis.

The Nature of Mathematical Modeling

The Nature of Mathematical Modeling PDF Author: Neil A. Gershenfeld
Publisher: Cambridge University Press
ISBN: 9780521570954
Category : Science
Languages : en
Pages : 268

Book Description
This is a book about the nature of mathematical modeling, and about the kinds of techniques that are useful for modeling. The text is in four sections. The first covers exact and approximate analytical techniques; the second, numerical methods; the third, model inference based on observations; and the last, the special role of time in modeling. Each of the topics in the book would be the worthy subject of a dedicated text, but only by presenting the material in this way is it possible to make so much material accessible to so many people. Each chapter presents a concise summary of the core results in an area. The text is complemented by extensive worked problems.