Author: Randolph Bank
Publisher: Birkhäuser
ISBN: 3034885288
Category : Mathematics
Languages : en
Pages : 314
Book Description
Progress in today's high-technology industries is strongly associated with the development of new mathematical tools. A typical illustration of this partnership is the mathematical modelling and numerical simulation of electric circuits and semiconductor devices. At the second Oberwolfach conference devoted to this important and timely field, scientists from around the world, mainly applied mathematicians and electrical engineers from industry and universities, presented their new results. Their contributions, forming the body of this work, cover electric circuit simulation, device simulation and process simulation. Discussions on experiences with standard software packages and improvements of such packages are included. In the semiconductor area special lectures were given on new modelling approaches, numerical techniques and existence and uniqueness results. In this connection, mention is made, for example, of mixed finite element methods, an extension of the Baliga-Patankar technique for a three dimensional simulation, and the connection between semiconductor equations and the Boltzmann equations.
Mathematical Modelling and Simulation of Electrical Circuits and Semiconductor Devices
Author: Randolph Bank
Publisher: Birkhäuser
ISBN: 3034885288
Category : Mathematics
Languages : en
Pages : 314
Book Description
Progress in today's high-technology industries is strongly associated with the development of new mathematical tools. A typical illustration of this partnership is the mathematical modelling and numerical simulation of electric circuits and semiconductor devices. At the second Oberwolfach conference devoted to this important and timely field, scientists from around the world, mainly applied mathematicians and electrical engineers from industry and universities, presented their new results. Their contributions, forming the body of this work, cover electric circuit simulation, device simulation and process simulation. Discussions on experiences with standard software packages and improvements of such packages are included. In the semiconductor area special lectures were given on new modelling approaches, numerical techniques and existence and uniqueness results. In this connection, mention is made, for example, of mixed finite element methods, an extension of the Baliga-Patankar technique for a three dimensional simulation, and the connection between semiconductor equations and the Boltzmann equations.
Publisher: Birkhäuser
ISBN: 3034885288
Category : Mathematics
Languages : en
Pages : 314
Book Description
Progress in today's high-technology industries is strongly associated with the development of new mathematical tools. A typical illustration of this partnership is the mathematical modelling and numerical simulation of electric circuits and semiconductor devices. At the second Oberwolfach conference devoted to this important and timely field, scientists from around the world, mainly applied mathematicians and electrical engineers from industry and universities, presented their new results. Their contributions, forming the body of this work, cover electric circuit simulation, device simulation and process simulation. Discussions on experiences with standard software packages and improvements of such packages are included. In the semiconductor area special lectures were given on new modelling approaches, numerical techniques and existence and uniqueness results. In this connection, mention is made, for example, of mixed finite element methods, an extension of the Baliga-Patankar technique for a three dimensional simulation, and the connection between semiconductor equations and the Boltzmann equations.
Mathematical Modelling and Simulation of Electric Circuits and Semiconductor Devices
Author: Randolph E. Bank
Publisher:
ISBN:
Category : Computer simulation
Languages : en
Pages : 324
Book Description
Publisher:
ISBN:
Category : Computer simulation
Languages : en
Pages : 324
Book Description
Mathematical Modelling and Simulation of Electrical Circuits and Semiconductor Devices
Author: R. Bank
Publisher: Birkhäuser
ISBN: 9783034856997
Category : Science
Languages : en
Pages : 297
Book Description
Numerical simulation and modelling of electric circuits and semiconductor devices are of primal interest in today's high technology industries. At the Oberwolfach Conference more than forty scientists from around the world, in cluding applied mathematicians and electrical engineers from industry and universities, presented new results in this area of growing importance. The contributions to this conference are presented in these proceedings. They include contributions on special topics of current interest in circuit and device simulation, as well as contributions that present an overview of the field. In the semiconductor area special lectures were given on mixed finite element methods and iterative procedures for the solution of large linear systems. For three dimensional models new discretization procedures including software packages were presented. Con nections between semiconductor equations and the Boltzmann equation were shown as well as relations to the quantum transport equation. Other issues discussed in this area include the design of simulation programs for semiconductors, vectorcomputers, and interface problems in several dimensions. Topics discussed in the area of circuit simulation include the index classification of differential-algebraic systems, connections with ill-posed problems, and regularization techniques. Split discretization procedures were given for the efficient calculation of periodic solutions of circuits taking into acount the latency. Homotopy methods and new numerical techniques for differential-algebraic systems were presented, and im provements of special numerical methods for standard software packages were sug gested. The editors VII Table of Contents Circuit Simulation Merten K.
Publisher: Birkhäuser
ISBN: 9783034856997
Category : Science
Languages : en
Pages : 297
Book Description
Numerical simulation and modelling of electric circuits and semiconductor devices are of primal interest in today's high technology industries. At the Oberwolfach Conference more than forty scientists from around the world, in cluding applied mathematicians and electrical engineers from industry and universities, presented new results in this area of growing importance. The contributions to this conference are presented in these proceedings. They include contributions on special topics of current interest in circuit and device simulation, as well as contributions that present an overview of the field. In the semiconductor area special lectures were given on mixed finite element methods and iterative procedures for the solution of large linear systems. For three dimensional models new discretization procedures including software packages were presented. Con nections between semiconductor equations and the Boltzmann equation were shown as well as relations to the quantum transport equation. Other issues discussed in this area include the design of simulation programs for semiconductors, vectorcomputers, and interface problems in several dimensions. Topics discussed in the area of circuit simulation include the index classification of differential-algebraic systems, connections with ill-posed problems, and regularization techniques. Split discretization procedures were given for the efficient calculation of periodic solutions of circuits taking into acount the latency. Homotopy methods and new numerical techniques for differential-algebraic systems were presented, and im provements of special numerical methods for standard software packages were sug gested. The editors VII Table of Contents Circuit Simulation Merten K.
Mathematical Modelling and Simulation of Electrical Circuits and Semiconductor Devices
Author: R. Bank
Publisher: Birkhäuser
ISBN: 9783764324391
Category : Science
Languages : en
Pages : 0
Book Description
Numerical simulation and modelling of electric circuits and semiconductor devices are of primal interest in today's high technology industries. At the Oberwolfach Conference more than forty scientists from around the world, in cluding applied mathematicians and electrical engineers from industry and universities, presented new results in this area of growing importance. The contributions to this conference are presented in these proceedings. They include contributions on special topics of current interest in circuit and device simulation, as well as contributions that present an overview of the field. In the semiconductor area special lectures were given on mixed finite element methods and iterative procedures for the solution of large linear systems. For three dimensional models new discretization procedures including software packages were presented. Con nections between semiconductor equations and the Boltzmann equation were shown as well as relations to the quantum transport equation. Other issues discussed in this area include the design of simulation programs for semiconductors, vectorcomputers, and interface problems in several dimensions. Topics discussed in the area of circuit simulation include the index classification of differential-algebraic systems, connections with ill-posed problems, and regularization techniques. Split discretization procedures were given for the efficient calculation of periodic solutions of circuits taking into acount the latency. Homotopy methods and new numerical techniques for differential-algebraic systems were presented, and im provements of special numerical methods for standard software packages were sug gested. The editors VII Table of Contents Circuit Simulation Merten K.
Publisher: Birkhäuser
ISBN: 9783764324391
Category : Science
Languages : en
Pages : 0
Book Description
Numerical simulation and modelling of electric circuits and semiconductor devices are of primal interest in today's high technology industries. At the Oberwolfach Conference more than forty scientists from around the world, in cluding applied mathematicians and electrical engineers from industry and universities, presented new results in this area of growing importance. The contributions to this conference are presented in these proceedings. They include contributions on special topics of current interest in circuit and device simulation, as well as contributions that present an overview of the field. In the semiconductor area special lectures were given on mixed finite element methods and iterative procedures for the solution of large linear systems. For three dimensional models new discretization procedures including software packages were presented. Con nections between semiconductor equations and the Boltzmann equation were shown as well as relations to the quantum transport equation. Other issues discussed in this area include the design of simulation programs for semiconductors, vectorcomputers, and interface problems in several dimensions. Topics discussed in the area of circuit simulation include the index classification of differential-algebraic systems, connections with ill-posed problems, and regularization techniques. Split discretization procedures were given for the efficient calculation of periodic solutions of circuits taking into acount the latency. Homotopy methods and new numerical techniques for differential-algebraic systems were presented, and im provements of special numerical methods for standard software packages were sug gested. The editors VII Table of Contents Circuit Simulation Merten K.
Semiconductor Device Modeling with Spice
Author: Giuseppe Massabrio
Publisher: McGraw Hill Professional
ISBN: 9780071349550
Category : Technology & Engineering
Languages : en
Pages : 500
Book Description
Publisher's Note: Products purchased from Third Party sellers are not guaranteed by the publisher for quality, authenticity, or access to any online entitlements included with the product.
Publisher: McGraw Hill Professional
ISBN: 9780071349550
Category : Technology & Engineering
Languages : en
Pages : 500
Book Description
Publisher's Note: Products purchased from Third Party sellers are not guaranteed by the publisher for quality, authenticity, or access to any online entitlements included with the product.
Semiconductors
Author: W.M. Jr. Coughran
Publisher: Springer Science & Business Media
ISBN: 1461384109
Category : Mathematics
Languages : en
Pages : 413
Book Description
This IMA Volume in Mathematics and its Applications SEMICONDUCTORS, PART II is based on the proceedings of the IMA summer program "Semiconductors." Our goal was to foster interaction in this interdisciplinary field which involves electrical engineers, computer scientists, semiconductor physicists and mathematicians, from both university and industry. In particular, the program was meant to encourage the participation of numerical and mathematical analysts with backgrounds in ordinary and partial differential equations, to help get them involved in the mathematical as pects of semiconductor models and circuits. We are grateful to W.M. Coughran, Jr., Julian Cole, Peter Lloyd, and Jacob White for helping Farouk Odeh organize this activity and trust that the proceedings will provide a fitting memorial to Farouk. We also take this opportunity to thank those agencies whose financial support made the program possible: the Air Force Office of Scientific Research, the Army Research Office, the National Science Foundation, and the Office of Naval Research. A vner Friedman Willard Miller, J r. Preface to Part II Semiconductor and integrated-circuit modeling are an important part of the high technology "chip" industry, whose high-performance, low-cost microprocessors and high-density memory designs form the basis for supercomputers, engineering work stations, laptop computers, and other modern information appliances. There are a variety of differential equation problems that must be solved to facilitate such mod eling.
Publisher: Springer Science & Business Media
ISBN: 1461384109
Category : Mathematics
Languages : en
Pages : 413
Book Description
This IMA Volume in Mathematics and its Applications SEMICONDUCTORS, PART II is based on the proceedings of the IMA summer program "Semiconductors." Our goal was to foster interaction in this interdisciplinary field which involves electrical engineers, computer scientists, semiconductor physicists and mathematicians, from both university and industry. In particular, the program was meant to encourage the participation of numerical and mathematical analysts with backgrounds in ordinary and partial differential equations, to help get them involved in the mathematical as pects of semiconductor models and circuits. We are grateful to W.M. Coughran, Jr., Julian Cole, Peter Lloyd, and Jacob White for helping Farouk Odeh organize this activity and trust that the proceedings will provide a fitting memorial to Farouk. We also take this opportunity to thank those agencies whose financial support made the program possible: the Air Force Office of Scientific Research, the Army Research Office, the National Science Foundation, and the Office of Naval Research. A vner Friedman Willard Miller, J r. Preface to Part II Semiconductor and integrated-circuit modeling are an important part of the high technology "chip" industry, whose high-performance, low-cost microprocessors and high-density memory designs form the basis for supercomputers, engineering work stations, laptop computers, and other modern information appliances. There are a variety of differential equation problems that must be solved to facilitate such mod eling.
Analysis of Charge Transport
Author: Joseph W. Jerome
Publisher: Springer Science & Business Media
ISBN: 3642799876
Category : Mathematics
Languages : en
Pages : 177
Book Description
This book addresses the mathematical aspects of semiconductor modeling, with particular attention focused on the drift-diffusion model. The aim is to provide a rigorous basis for those models which are actually employed in practice, and to analyze the approximation properties of discretization procedures. The book is intended for applied and computational mathematicians, and for mathematically literate engineers, who wish to gain an understanding of the mathematical framework that is pertinent to device modeling. The latter audience will welcome the introduction of hydrodynamic and energy transport models in Chap. 3. Solutions of the nonlinear steady-state systems are analyzed as the fixed points of a mapping T, or better, a family of such mappings, distinguished by system decoupling. Significant attention is paid to questions related to the mathematical properties of this mapping, termed the Gummel map. Compu tational aspects of this fixed point mapping for analysis of discretizations are discussed as well. We present a novel nonlinear approximation theory, termed the Kras nosel'skii operator calculus, which we develop in Chap. 6 as an appropriate extension of the Babuska-Aziz inf-sup linear saddle point theory. It is shown in Chap. 5 how this applies to the semiconductor model. We also present in Chap. 4 a thorough study of various realizations of the Gummel map, which includes non-uniformly elliptic systems and variational inequalities. In Chap.
Publisher: Springer Science & Business Media
ISBN: 3642799876
Category : Mathematics
Languages : en
Pages : 177
Book Description
This book addresses the mathematical aspects of semiconductor modeling, with particular attention focused on the drift-diffusion model. The aim is to provide a rigorous basis for those models which are actually employed in practice, and to analyze the approximation properties of discretization procedures. The book is intended for applied and computational mathematicians, and for mathematically literate engineers, who wish to gain an understanding of the mathematical framework that is pertinent to device modeling. The latter audience will welcome the introduction of hydrodynamic and energy transport models in Chap. 3. Solutions of the nonlinear steady-state systems are analyzed as the fixed points of a mapping T, or better, a family of such mappings, distinguished by system decoupling. Significant attention is paid to questions related to the mathematical properties of this mapping, termed the Gummel map. Compu tational aspects of this fixed point mapping for analysis of discretizations are discussed as well. We present a novel nonlinear approximation theory, termed the Kras nosel'skii operator calculus, which we develop in Chap. 6 as an appropriate extension of the Babuska-Aziz inf-sup linear saddle point theory. It is shown in Chap. 5 how this applies to the semiconductor model. We also present in Chap. 4 a thorough study of various realizations of the Gummel map, which includes non-uniformly elliptic systems and variational inequalities. In Chap.
Mathematical Problems in Semiconductor Physics
Author: Angelo Marcello Anile
Publisher: Springer Science & Business Media
ISBN: 9783540408024
Category : Science
Languages : en
Pages : 164
Book Description
On the the mathematical aspects of the theory of carrier transport in semiconductor devices. The subjects covered include hydrodynamical models for semiconductors based on the maximum entropy principle of extended thermodynamics, mathematical theory of drift-diffusion equations with applications, and the methods of asymptotic analysis.
Publisher: Springer Science & Business Media
ISBN: 9783540408024
Category : Science
Languages : en
Pages : 164
Book Description
On the the mathematical aspects of the theory of carrier transport in semiconductor devices. The subjects covered include hydrodynamical models for semiconductors based on the maximum entropy principle of extended thermodynamics, mathematical theory of drift-diffusion equations with applications, and the methods of asymptotic analysis.
Semiconductor Modeling:
Author: Roy Leventhal
Publisher: Springer Science & Business Media
ISBN: 0387241604
Category : Technology & Engineering
Languages : en
Pages : 769
Book Description
Discusses process variation, model accuracy, design flow and many other practical engineering, reliability and manufacturing issues Gives a good overview for a person who is not an expert in modeling and simulation, enabling them to extract the necessary information to competently use modeling and simulation programs Written for engineering students and product design engineers
Publisher: Springer Science & Business Media
ISBN: 0387241604
Category : Technology & Engineering
Languages : en
Pages : 769
Book Description
Discusses process variation, model accuracy, design flow and many other practical engineering, reliability and manufacturing issues Gives a good overview for a person who is not an expert in modeling and simulation, enabling them to extract the necessary information to competently use modeling and simulation programs Written for engineering students and product design engineers
Scientific Computing in Electrical Engineering
Author: Ursula van Rienen
Publisher: Springer Science & Business Media
ISBN: 3642564704
Category : Technology & Engineering
Languages : en
Pages : 426
Book Description
rd This book presents a collection of selected contributions presented at the 3 International Workshop on Scientific Computing in Electrical Engineering, SCEE-2000, which took place in Warnemiinde, Germany, from August 20 to 23, 2000. Nearly hundred scientists and engineers from thirteen countries gathered in Warnemiinde to participate in the conference. Rostock Univer sity, the oldest university in Northern Europe founded in 1419, hosted the conference. This workshop followed two earlier workshops held 1997 at the Darmstadt University of Technology and 1998 at Weierstrass Institute for Applied Anal ysis and Stochastics in Berlin under the auspices ofthe German Mathematical Society. These workshops aimed at bringing together two scientific communi ties: applied mathematicians and electrical engineers who do research in the field of scientific computing in electrical engineering. This, of course, is a wide field, which is why it was decided to concentrate on selected major topics. The workshop in Darmstadt, which was organized by Michael Giinther from the Mathematics Department and Ursula van Rienen from the Department of Electrical Engineering and Information Technology,brought together more than hundred scientists interested in numerical methods for the simulation of circuits and electromagnetic fields. This was a great success. Voices coming from the participants suggested that it was time to bring these communities together in order to get to know each other, to discuss mutual interests and to start cooperative work. A collection of selected contributions appeared in 'Surveys on Mathematics for Industry', Vol.8, No. 3-4 and Vol.9, No.2, 1999.
Publisher: Springer Science & Business Media
ISBN: 3642564704
Category : Technology & Engineering
Languages : en
Pages : 426
Book Description
rd This book presents a collection of selected contributions presented at the 3 International Workshop on Scientific Computing in Electrical Engineering, SCEE-2000, which took place in Warnemiinde, Germany, from August 20 to 23, 2000. Nearly hundred scientists and engineers from thirteen countries gathered in Warnemiinde to participate in the conference. Rostock Univer sity, the oldest university in Northern Europe founded in 1419, hosted the conference. This workshop followed two earlier workshops held 1997 at the Darmstadt University of Technology and 1998 at Weierstrass Institute for Applied Anal ysis and Stochastics in Berlin under the auspices ofthe German Mathematical Society. These workshops aimed at bringing together two scientific communi ties: applied mathematicians and electrical engineers who do research in the field of scientific computing in electrical engineering. This, of course, is a wide field, which is why it was decided to concentrate on selected major topics. The workshop in Darmstadt, which was organized by Michael Giinther from the Mathematics Department and Ursula van Rienen from the Department of Electrical Engineering and Information Technology,brought together more than hundred scientists interested in numerical methods for the simulation of circuits and electromagnetic fields. This was a great success. Voices coming from the participants suggested that it was time to bring these communities together in order to get to know each other, to discuss mutual interests and to start cooperative work. A collection of selected contributions appeared in 'Surveys on Mathematics for Industry', Vol.8, No. 3-4 and Vol.9, No.2, 1999.