Author: Alexander G. Kyurkchan
Publisher: Elsevier
ISBN: 0128037482
Category : Science
Languages : en
Pages : 282
Book Description
Mathematical Modeling in Diffraction Theory: Based on A Priori Information on the Analytical Properties of the Solution provides the fundamental physical concepts behind the theory of wave diffraction and scattered wave fields as well as its application in radio physics, acoustics, optics, radio astronomy, biophysics, geophysics, and astrophysics. This book provides a coherent discussion of several advanced topics that have the potential to push forward progress in this field. It begins with examples illustrating the importance of taking a priori information into account when developing algorithms for solving diffraction problems, with subsequent chapters discussing the basic analytical representations of wave fields, the auxiliary current and source methods for solving the problems of diffraction at compact scatterers, the null field and matrix methods that are widely used to solve problems in radio-physics, radio-astronomy, and biophysics, and the continued boundary condition and pattern equation method. - Provides ideas and techniques for obtaining a priori information on analytical properties of wave fields and provides methods for solving diffraction problems - Includes numerous concrete examples of localization of singularities of analytical continuation of wave fields - Presents a qualitative explanation of the formation of visions of objects - Formulates the concept of "invisible objects - Supplies appropriate computer programs for all presented methods
Mathematical Modeling in Diffraction Theory
Author: Alexander G. Kyurkchan
Publisher: Elsevier
ISBN: 0128037482
Category : Science
Languages : en
Pages : 282
Book Description
Mathematical Modeling in Diffraction Theory: Based on A Priori Information on the Analytical Properties of the Solution provides the fundamental physical concepts behind the theory of wave diffraction and scattered wave fields as well as its application in radio physics, acoustics, optics, radio astronomy, biophysics, geophysics, and astrophysics. This book provides a coherent discussion of several advanced topics that have the potential to push forward progress in this field. It begins with examples illustrating the importance of taking a priori information into account when developing algorithms for solving diffraction problems, with subsequent chapters discussing the basic analytical representations of wave fields, the auxiliary current and source methods for solving the problems of diffraction at compact scatterers, the null field and matrix methods that are widely used to solve problems in radio-physics, radio-astronomy, and biophysics, and the continued boundary condition and pattern equation method. - Provides ideas and techniques for obtaining a priori information on analytical properties of wave fields and provides methods for solving diffraction problems - Includes numerous concrete examples of localization of singularities of analytical continuation of wave fields - Presents a qualitative explanation of the formation of visions of objects - Formulates the concept of "invisible objects - Supplies appropriate computer programs for all presented methods
Publisher: Elsevier
ISBN: 0128037482
Category : Science
Languages : en
Pages : 282
Book Description
Mathematical Modeling in Diffraction Theory: Based on A Priori Information on the Analytical Properties of the Solution provides the fundamental physical concepts behind the theory of wave diffraction and scattered wave fields as well as its application in radio physics, acoustics, optics, radio astronomy, biophysics, geophysics, and astrophysics. This book provides a coherent discussion of several advanced topics that have the potential to push forward progress in this field. It begins with examples illustrating the importance of taking a priori information into account when developing algorithms for solving diffraction problems, with subsequent chapters discussing the basic analytical representations of wave fields, the auxiliary current and source methods for solving the problems of diffraction at compact scatterers, the null field and matrix methods that are widely used to solve problems in radio-physics, radio-astronomy, and biophysics, and the continued boundary condition and pattern equation method. - Provides ideas and techniques for obtaining a priori information on analytical properties of wave fields and provides methods for solving diffraction problems - Includes numerous concrete examples of localization of singularities of analytical continuation of wave fields - Presents a qualitative explanation of the formation of visions of objects - Formulates the concept of "invisible objects - Supplies appropriate computer programs for all presented methods
Mathematical Theory of Diffraction
Author: Arnold Sommerfeld
Publisher: Springer Science & Business Media
ISBN: 9780817636043
Category : Mathematics
Languages : en
Pages : 172
Book Description
A. Sommerfeld's "Mathematische Theorie der Diffraction" marks a milestone in optical theory, full of insights that are still relevant today. In a stunning tour de force, Sommerfeld derives the first mathematically rigorous solution of an optical diffraction problem. Indeed, his diffraction analysis is a surprisingly rich and complex mix of pure and applied mathematics, and his often-cited diffraction solution is presented only as an application of a much more general set of mathematical results. This complete translation, reflecting substantial scholarship, is the first publication in English of Sommerfeld's original work. The extensive notes by the translators are rich in historical background and provide many technical details for the reader.
Publisher: Springer Science & Business Media
ISBN: 9780817636043
Category : Mathematics
Languages : en
Pages : 172
Book Description
A. Sommerfeld's "Mathematische Theorie der Diffraction" marks a milestone in optical theory, full of insights that are still relevant today. In a stunning tour de force, Sommerfeld derives the first mathematically rigorous solution of an optical diffraction problem. Indeed, his diffraction analysis is a surprisingly rich and complex mix of pure and applied mathematics, and his often-cited diffraction solution is presented only as an application of a much more general set of mathematical results. This complete translation, reflecting substantial scholarship, is the first publication in English of Sommerfeld's original work. The extensive notes by the translators are rich in historical background and provide many technical details for the reader.
Seismic Diffraction
Author: Tijmen Jan Moser
Publisher: SEG Books
ISBN: 1560803177
Category : Science
Languages : en
Pages : 823
Book Description
The use of diffraction imaging to complement the seismic reflection method is rapidly gaining momentum in the oil and gas industry. As the industry moves toward exploiting smaller and more complex conventional reservoirs and extensive new unconventional resource plays, the application of the seismic diffraction method to image sub-wavelength features such as small-scale faults, fractures and stratigraphic pinchouts is expected to increase dramatically over the next few years. “Seismic Diffraction” covers seismic diffraction theory, modeling, observation, and imaging. Papers and discussion include an overview of seismic diffractions, including classic papers which introduced the potential of diffraction phenomena in seismic processing; papers on the forward modeling of seismic diffractions, with an emphasis on the theoretical principles; papers which describe techniques for diffraction mathematical modeling as well as laboratory experiments for the physical modeling of diffractions; key papers dealing with the observation of seismic diffractions, in near-surface-, reservoir-, as well as crustal studies; and key papers on diffraction imaging.
Publisher: SEG Books
ISBN: 1560803177
Category : Science
Languages : en
Pages : 823
Book Description
The use of diffraction imaging to complement the seismic reflection method is rapidly gaining momentum in the oil and gas industry. As the industry moves toward exploiting smaller and more complex conventional reservoirs and extensive new unconventional resource plays, the application of the seismic diffraction method to image sub-wavelength features such as small-scale faults, fractures and stratigraphic pinchouts is expected to increase dramatically over the next few years. “Seismic Diffraction” covers seismic diffraction theory, modeling, observation, and imaging. Papers and discussion include an overview of seismic diffractions, including classic papers which introduced the potential of diffraction phenomena in seismic processing; papers on the forward modeling of seismic diffractions, with an emphasis on the theoretical principles; papers which describe techniques for diffraction mathematical modeling as well as laboratory experiments for the physical modeling of diffractions; key papers dealing with the observation of seismic diffractions, in near-surface-, reservoir-, as well as crustal studies; and key papers on diffraction imaging.
Scattering Theory for Diffraction Gratings
Author: Calvin H. Wilcox
Publisher: Springer Science & Business Media
ISBN: 1461211301
Category : Mathematics
Languages : en
Pages : 172
Book Description
The scattering of acoustic and electromagnetic waves by periodic sur faces plays a role in many areas of applied physics and engineering. Opti cal diffraction gratings date from the nineteenth century and are still widely used by spectroscopists. More recently, diffraction gratings have been used as coupling devices for optical waveguides. Trains of surface waves on the oceans are natural diffraction gratings which influence the scattering of electromagnetic waves and underwater sound. Similarly, the surface of a crystal acts as a diffraction grating for the scattering of atomic beams. This list of natural and artificial diffraction gratings could easily be extended. The purpose of this monograph is to develop from first principles a theory of the scattering of acoustic and electromagnetic waves by periodic surfaces. In physical terms, the scattering of both time-harmonic and transient fields is analyzed. The corresponding mathematical model leads to the study of boundary value problems for the Helmholtz and d'Alembert wave equations in plane domains bounded by periodic curves. In the formal ism adopted here these problems are intimately related to the spectral analysis of the Laplace operator, acting in a Hilbert space of functions defined in the domain adjacent to the grating.
Publisher: Springer Science & Business Media
ISBN: 1461211301
Category : Mathematics
Languages : en
Pages : 172
Book Description
The scattering of acoustic and electromagnetic waves by periodic sur faces plays a role in many areas of applied physics and engineering. Opti cal diffraction gratings date from the nineteenth century and are still widely used by spectroscopists. More recently, diffraction gratings have been used as coupling devices for optical waveguides. Trains of surface waves on the oceans are natural diffraction gratings which influence the scattering of electromagnetic waves and underwater sound. Similarly, the surface of a crystal acts as a diffraction grating for the scattering of atomic beams. This list of natural and artificial diffraction gratings could easily be extended. The purpose of this monograph is to develop from first principles a theory of the scattering of acoustic and electromagnetic waves by periodic surfaces. In physical terms, the scattering of both time-harmonic and transient fields is analyzed. The corresponding mathematical model leads to the study of boundary value problems for the Helmholtz and d'Alembert wave equations in plane domains bounded by periodic curves. In the formal ism adopted here these problems are intimately related to the spectral analysis of the Laplace operator, acting in a Hilbert space of functions defined in the domain adjacent to the grating.
Mathematical Modeling in Optical Science
Author: Gang Bao
Publisher: SIAM
ISBN: 0898714753
Category : Science
Languages : en
Pages : 344
Book Description
This volume addresses recent developments in mathematical modeling in three areas of optical science: diffractive optics, photonic band gap structures, and waveguides. Particular emphasis is on the formulation of mathematical models and the design and analysis of new computational approaches. The book contains cutting-edge discourses on emerging technology in optics that provides significant challenges and opportunities for applied mathematicians, researchers, and engineers. Each of the three topics is presented through a series of survey papers to provide a broad overview focusing on the mathematical models. Chapters present model problems, physical principles, mathematical and computational approaches, and engineering applications corresponding to each of the three areas. Although some of the subject matter is classical, the topics presented are new and represent the latest developments in their respective fields.
Publisher: SIAM
ISBN: 0898714753
Category : Science
Languages : en
Pages : 344
Book Description
This volume addresses recent developments in mathematical modeling in three areas of optical science: diffractive optics, photonic band gap structures, and waveguides. Particular emphasis is on the formulation of mathematical models and the design and analysis of new computational approaches. The book contains cutting-edge discourses on emerging technology in optics that provides significant challenges and opportunities for applied mathematicians, researchers, and engineers. Each of the three topics is presented through a series of survey papers to provide a broad overview focusing on the mathematical models. Chapters present model problems, physical principles, mathematical and computational approaches, and engineering applications corresponding to each of the three areas. Although some of the subject matter is classical, the topics presented are new and represent the latest developments in their respective fields.
Mathematical Models in Boundary Layer Theory
Author: O.A. Oleinik
Publisher: CRC Press
ISBN: 9781584880158
Category : Mathematics
Languages : en
Pages : 532
Book Description
Since Prandtl first suggested it in 1904, boundary layer theory has become a fundamental aspect of fluid dynamics. Although a vast literature exists for theoretical and experimental aspects of the theory, for the most part, mathematical studies can be found only in separate, scattered articles. Mathematical Models in Boundary Layer Theory offers the first systematic exposition of the mathematical methods and main results of the theory. Beginning with the basics, the authors detail the techniques and results that reveal the nature of the equations that govern the flow within boundary layers and ultimately describe the laws underlying the motion of fluids with small viscosity. They investigate the questions of existence and uniqueness of solutions, the stability of solutions with respect to perturbations, and the qualitative behavior of solutions and their asymptotics. Of particular importance for applications, they present methods for an approximate solution of the Prandtl system and a subsequent evaluation of the rate of convergence of the approximations to the exact solution. Written by the world's foremost experts on the subject, Mathematical Models in Boundary Layer Theory provides the opportunity to explore its mathematical studies and their importance to the nonlinear theory of viscous and electrically conducting flows, the theory of heat and mass transfer, and the dynamics of reactive and muliphase media. With the theory's importance to a wide variety of applications, applied mathematicians-especially those in fluid dynamics-along with engineers of aeronautical and ship design will undoubtedly welcome this authoritative, state-of-the-art treatise.
Publisher: CRC Press
ISBN: 9781584880158
Category : Mathematics
Languages : en
Pages : 532
Book Description
Since Prandtl first suggested it in 1904, boundary layer theory has become a fundamental aspect of fluid dynamics. Although a vast literature exists for theoretical and experimental aspects of the theory, for the most part, mathematical studies can be found only in separate, scattered articles. Mathematical Models in Boundary Layer Theory offers the first systematic exposition of the mathematical methods and main results of the theory. Beginning with the basics, the authors detail the techniques and results that reveal the nature of the equations that govern the flow within boundary layers and ultimately describe the laws underlying the motion of fluids with small viscosity. They investigate the questions of existence and uniqueness of solutions, the stability of solutions with respect to perturbations, and the qualitative behavior of solutions and their asymptotics. Of particular importance for applications, they present methods for an approximate solution of the Prandtl system and a subsequent evaluation of the rate of convergence of the approximations to the exact solution. Written by the world's foremost experts on the subject, Mathematical Models in Boundary Layer Theory provides the opportunity to explore its mathematical studies and their importance to the nonlinear theory of viscous and electrically conducting flows, the theory of heat and mass transfer, and the dynamics of reactive and muliphase media. With the theory's importance to a wide variety of applications, applied mathematicians-especially those in fluid dynamics-along with engineers of aeronautical and ship design will undoubtedly welcome this authoritative, state-of-the-art treatise.
A Celebration of Mathematical Modeling
Author: Dan Czamanski
Publisher: Springer Science & Business Media
ISBN: 9401704279
Category : Mathematics
Languages : en
Pages : 279
Book Description
ThisvolumecelebratestheeightiethbirthdayofJosephB. Keller. The authors who contributed to this volume belong to what can be called the “Keller school of applied mathematics. ” They are former students, postdoctoral fellows and visiting scientists who have collaborated with Joe (some of them still do) during his long career. They all look at Joe as their ultimate (role) model. JoeKeller’sdistinguishedcareerhasbeendividedbetweentheCourant Institute of Mathematical Sciences at New York University, where he received all his degrees (his PhD adviser being the great R. Courant himself) and served as a professor for 30 years, and Stanford University, where he has been since 1978. The appended photos highlight some scenes from the old days. Those who know Joe Keller’s work have been always amazed by its diversity and breadth. It is considered a well-known truth that there is not a single important area in applied mathematics or physics which Keller did not contribute to. This can be appreciated, for example, by glancing through his list of publication included in this volume. App- priately, the papers in this book, written with Joe’s inspiration, cover a variety of application areas; together they span the broad subject of mathematical modeling. The models discussed in the book describe the behavior of various systems such as those related to ?nance, waves, - croorganisms, shocks, DNA, ?ames, contact, optics, ?uids, bubbles and jets. Joe’s activity includes many more areas, which unfortunately are not represented here.
Publisher: Springer Science & Business Media
ISBN: 9401704279
Category : Mathematics
Languages : en
Pages : 279
Book Description
ThisvolumecelebratestheeightiethbirthdayofJosephB. Keller. The authors who contributed to this volume belong to what can be called the “Keller school of applied mathematics. ” They are former students, postdoctoral fellows and visiting scientists who have collaborated with Joe (some of them still do) during his long career. They all look at Joe as their ultimate (role) model. JoeKeller’sdistinguishedcareerhasbeendividedbetweentheCourant Institute of Mathematical Sciences at New York University, where he received all his degrees (his PhD adviser being the great R. Courant himself) and served as a professor for 30 years, and Stanford University, where he has been since 1978. The appended photos highlight some scenes from the old days. Those who know Joe Keller’s work have been always amazed by its diversity and breadth. It is considered a well-known truth that there is not a single important area in applied mathematics or physics which Keller did not contribute to. This can be appreciated, for example, by glancing through his list of publication included in this volume. App- priately, the papers in this book, written with Joe’s inspiration, cover a variety of application areas; together they span the broad subject of mathematical modeling. The models discussed in the book describe the behavior of various systems such as those related to ?nance, waves, - croorganisms, shocks, DNA, ?ames, contact, optics, ?uids, bubbles and jets. Joe’s activity includes many more areas, which unfortunately are not represented here.
Mathematical Models of Higher Orders
Author: Vadim A. Krysko
Publisher: Springer
ISBN: 3030047148
Category : Mathematics
Languages : en
Pages : 477
Book Description
This book offers a valuable methodological approach to the state-of-the-art of the classical plate/shell mathematical models, exemplifying the vast range of mathematical models of nonlinear dynamics and statics of continuous mechanical structural members. The main objective highlights the need for further study of the classical problem of shell dynamics consisting of mathematical modeling, derivation of nonlinear PDEs, and of finding their solutions based on the development of new and effective numerical techniques. The book is designed for a broad readership of graduate students in mechanical and civil engineering, applied mathematics, and physics, as well as to researchers and professionals interested in a rigorous and comprehensive study of modeling non-linear phenomena governed by PDEs.
Publisher: Springer
ISBN: 3030047148
Category : Mathematics
Languages : en
Pages : 477
Book Description
This book offers a valuable methodological approach to the state-of-the-art of the classical plate/shell mathematical models, exemplifying the vast range of mathematical models of nonlinear dynamics and statics of continuous mechanical structural members. The main objective highlights the need for further study of the classical problem of shell dynamics consisting of mathematical modeling, derivation of nonlinear PDEs, and of finding their solutions based on the development of new and effective numerical techniques. The book is designed for a broad readership of graduate students in mechanical and civil engineering, applied mathematics, and physics, as well as to researchers and professionals interested in a rigorous and comprehensive study of modeling non-linear phenomena governed by PDEs.
Mathematical Modeling in Optical Science
Author: Gang Bao
Publisher: SIAM
ISBN: 9780898717594
Category : Science
Languages : en
Pages : 349
Book Description
This volume addresses recent developments in mathematical modeling in three areas of optical science: diffractive optics, photonic band gap structures, and waveguides. Particular emphasis is on the formulation of mathematical models and the design and analysis of new computational approaches. The book contains cutting-edge discourses on emerging technology in optics that provides significant challenges and opportunities for applied mathematicians, researchers, and engineers.
Publisher: SIAM
ISBN: 9780898717594
Category : Science
Languages : en
Pages : 349
Book Description
This volume addresses recent developments in mathematical modeling in three areas of optical science: diffractive optics, photonic band gap structures, and waveguides. Particular emphasis is on the formulation of mathematical models and the design and analysis of new computational approaches. The book contains cutting-edge discourses on emerging technology in optics that provides significant challenges and opportunities for applied mathematicians, researchers, and engineers.
Handbook of Mathematical Models and Algorithms in Computer Vision and Imaging
Author: Ke Chen
Publisher: Springer Nature
ISBN: 3030986616
Category : Mathematics
Languages : en
Pages : 1981
Book Description
This handbook gathers together the state of the art on mathematical models and algorithms for imaging and vision. Its emphasis lies on rigorous mathematical methods, which represent the optimal solutions to a class of imaging and vision problems, and on effective algorithms, which are necessary for the methods to be translated to practical use in various applications. Viewing discrete images as data sampled from functional surfaces enables the use of advanced tools from calculus, functions and calculus of variations, and nonlinear optimization, and provides the basis of high-resolution imaging through geometry and variational models. Besides, optimization naturally connects traditional model-driven approaches to the emerging data-driven approaches of machine and deep learning. No other framework can provide comparable accuracy and precision to imaging and vision. Written by leading researchers in imaging and vision, the chapters in this handbook all start with gentle introductions, which make this work accessible to graduate students. For newcomers to the field, the book provides a comprehensive and fast-track introduction to the content, to save time and get on with tackling new and emerging challenges. For researchers, exposure to the state of the art of research works leads to an overall view of the entire field so as to guide new research directions and avoid pitfalls in moving the field forward and looking into the next decades of imaging and information services. This work can greatly benefit graduate students, researchers, and practitioners in imaging and vision; applied mathematicians; medical imagers; engineers; and computer scientists.
Publisher: Springer Nature
ISBN: 3030986616
Category : Mathematics
Languages : en
Pages : 1981
Book Description
This handbook gathers together the state of the art on mathematical models and algorithms for imaging and vision. Its emphasis lies on rigorous mathematical methods, which represent the optimal solutions to a class of imaging and vision problems, and on effective algorithms, which are necessary for the methods to be translated to practical use in various applications. Viewing discrete images as data sampled from functional surfaces enables the use of advanced tools from calculus, functions and calculus of variations, and nonlinear optimization, and provides the basis of high-resolution imaging through geometry and variational models. Besides, optimization naturally connects traditional model-driven approaches to the emerging data-driven approaches of machine and deep learning. No other framework can provide comparable accuracy and precision to imaging and vision. Written by leading researchers in imaging and vision, the chapters in this handbook all start with gentle introductions, which make this work accessible to graduate students. For newcomers to the field, the book provides a comprehensive and fast-track introduction to the content, to save time and get on with tackling new and emerging challenges. For researchers, exposure to the state of the art of research works leads to an overall view of the entire field so as to guide new research directions and avoid pitfalls in moving the field forward and looking into the next decades of imaging and information services. This work can greatly benefit graduate students, researchers, and practitioners in imaging and vision; applied mathematicians; medical imagers; engineers; and computer scientists.