Mathematical Methods for Objects Reconstruction PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Mathematical Methods for Objects Reconstruction PDF full book. Access full book title Mathematical Methods for Objects Reconstruction by Emiliano Cristiani. Download full books in PDF and EPUB format.

Mathematical Methods for Objects Reconstruction

Mathematical Methods for Objects Reconstruction PDF Author: Emiliano Cristiani
Publisher: Springer Nature
ISBN: 9819907764
Category : Mathematics
Languages : en
Pages : 185

Book Description
The volume collects several contributions to the INDAM workshop Mathematical Methods for Objects Reconstruction: from 3D Vision to 3D Printing held in Rome, February, 2021. The goal of the workshop was to discuss new methods and conceptual structures for managing these challenging problems. The chapters reflect this goal and the authors are academic researchers and some experts from industry working in the areas of 3D modeling, computer vision, 3D printing and/or developing new mathematical methods for these problems. The contributions present methodologies and challenges raised by the emergence of large-scale 3D reconstruction applications and low-cost 3D printers. The volume collects complementary knowledges from different areas of mathematics, computer science and engineering on research topics related to 3D printing, which are, so far, widely unexplored. Young researchers and future scientific leaders in the field of 3D data acquisition, 3D scene reconstruction, and 3D printing software development will find an excellent introduction to these problems and to the mathematical techniques necessary to solve them.

Mathematical Methods for Objects Reconstruction

Mathematical Methods for Objects Reconstruction PDF Author: Emiliano Cristiani
Publisher: Springer Nature
ISBN: 9819907764
Category : Mathematics
Languages : en
Pages : 185

Book Description
The volume collects several contributions to the INDAM workshop Mathematical Methods for Objects Reconstruction: from 3D Vision to 3D Printing held in Rome, February, 2021. The goal of the workshop was to discuss new methods and conceptual structures for managing these challenging problems. The chapters reflect this goal and the authors are academic researchers and some experts from industry working in the areas of 3D modeling, computer vision, 3D printing and/or developing new mathematical methods for these problems. The contributions present methodologies and challenges raised by the emergence of large-scale 3D reconstruction applications and low-cost 3D printers. The volume collects complementary knowledges from different areas of mathematics, computer science and engineering on research topics related to 3D printing, which are, so far, widely unexplored. Young researchers and future scientific leaders in the field of 3D data acquisition, 3D scene reconstruction, and 3D printing software development will find an excellent introduction to these problems and to the mathematical techniques necessary to solve them.

Mathematical Methods in Image Reconstruction

Mathematical Methods in Image Reconstruction PDF Author: Frank Natterer
Publisher: SIAM
ISBN: 9780898718324
Category : Computers
Languages : en
Pages : 228

Book Description
This book describes the state of the art of the mathematical theory and numerical analysis of imaging. Some of the applications covered in the book include computerized tomography, magnetic resonance imaging, emission tomography, electron microscopy, ultrasound transmission tomography, industrial tomography, seismic tomography, impedance tomography, and NIR imaging.

Phase Retrieval and Zero Crossings

Phase Retrieval and Zero Crossings PDF Author: N.E. Hurt
Publisher: Springer Science & Business Media
ISBN: 9781402003370
Category : Mathematics
Languages : en
Pages : 328

Book Description
'Et moi, ... , si j'avait su comment en :revenir, One scrvice mathematics has rendered the je n'y scrais point alle.' human race. lt has put common sense back Jules Veme where it bdongs, on the topmost shelf next to the dusty canister labclled 'discarded non- The series is divergent; therefore we may be sense'. able to do something with it. Erle T. Bc1l 0. Heaviside Mathematics is a tool for thought. A highly necessary tool in a world where both feedback and non­ linearities abound. Similarly, all kinds of parts of mathematics serve as tools for other parts and for other sciences. Applying a simple rewriting rule to the quote on the right above one finds such statements as: 'One service topology has rendered mathematical physics .. .'; 'One service logic has rendered com­ puter science .. .'; 'One service category theory has rendered mathematics .. .'.All arguably true. And all statements obtainable this way form part of the raison d'etre of this series.

Mathematical Methods in Computer Vision

Mathematical Methods in Computer Vision PDF Author: Peter J. Olver
Publisher: Springer Science & Business Media
ISBN: 9780387004976
Category : Business & Economics
Languages : en
Pages : 176

Book Description
"Comprises some of the key work presented at two IMA Wokshops on Computer Vision during fall of 2000."--Pref.

Handbook of Mathematical Methods in Imaging

Handbook of Mathematical Methods in Imaging PDF Author: Otmar Scherzer
Publisher: Springer Science & Business Media
ISBN: 0387929193
Category : Mathematics
Languages : en
Pages : 1626

Book Description
The Handbook of Mathematical Methods in Imaging provides a comprehensive treatment of the mathematical techniques used in imaging science. The material is grouped into two central themes, namely, Inverse Problems (Algorithmic Reconstruction) and Signal and Image Processing. Each section within the themes covers applications (modeling), mathematics, numerical methods (using a case example) and open questions. Written by experts in the area, the presentation is mathematically rigorous. The entries are cross-referenced for easy navigation through connected topics. Available in both print and electronic forms, the handbook is enhanced by more than 150 illustrations and an extended bibliography. It will benefit students, scientists and researchers in applied mathematics. Engineers and computer scientists working in imaging will also find this handbook useful.

Phase Retrieval and Zero Crossings

Phase Retrieval and Zero Crossings PDF Author: Norman Hurt
Publisher:
ISBN:
Category : Image reconstruction
Languages : en
Pages : 0

Book Description


Theory of Reconstruction from Image Motion

Theory of Reconstruction from Image Motion PDF Author: Stephen Maybank
Publisher: Springer Science & Business Media
ISBN: 3642775578
Category : Science
Languages : en
Pages : 268

Book Description
The image taken by a moving camera changes with time. These image motions contain information about the motion of the camera and about the shapes of the objects in the field of view. There are two main types of image motion, finite displacements and image velocities. Finite displacements are described by the point correspondences between two images of the same scene taken from different positions. Image velocities are the velocities of the points in the image as they move over the projection surface. Reconstruction is the task of obtaining from the image-motions information about the camera motion or about the shapes of objects in the field of view. In this book the theory underlying reconstruction is described. Reconstruction from image motion is the subject matter of two different sci entific disciplines, photogrammetry and computer vision. In photogrammetry the accuracy of reconstruction is emphasised; in computer vision the emphasis is on methods for obtaining information from images in real time in order to guide a mechanical device such as a robot arm or an automatic vehicle. This book arises from recent work carried out in computer vision. Computer vision is a young field but it is developing rapidly. The earliest papers on reconstruction in the computer vision literature date back only to the mid 1970s. As computer vision develops, the mathematical techniques applied to the analysis of recon struction become more appropriate and more powerful.

Advances in Photometric 3D-Reconstruction

Advances in Photometric 3D-Reconstruction PDF Author: Jean-Denis Durou
Publisher: Springer Nature
ISBN: 3030518663
Category : Computers
Languages : en
Pages : 239

Book Description
This book presents the latest advances in photometric 3D reconstruction. It provides the reader with an overview of the state of the art in the field, and of the latest research into both the theoretical foundations of photometric 3D reconstruction and its practical application in several fields (including security, medicine, cultural heritage and archiving, and engineering). These techniques play a crucial role within such emerging technologies as 3D printing, since they permit the direct conversion of an image into a solid object. The book covers both theoretical analysis and real-world applications, highlighting the importance of deepening interdisciplinary skills, and as such will be of interest to both academic researchers and practitioners from the computer vision and mathematical 3D modeling communities, as well as engineers involved in 3D printing. No prior background is required beyond a general knowledge of classical computer vision models, numerical methods for optimization, and partial differential equations.

Computer Vision and Mathematical Methods in Medical and Biomedical Image Analysis

Computer Vision and Mathematical Methods in Medical and Biomedical Image Analysis PDF Author: Milan Sonka
Publisher: Springer Science & Business Media
ISBN: 3540226753
Category : Computers
Languages : en
Pages : 448

Book Description
Medical imaging and medical image analysisare rapidly developing. While m- ical imaging has already become a standard of modern medical care, medical image analysis is still mostly performed visually and qualitatively. The ev- increasing volume of acquired data makes it impossible to utilize them in full. Equally important, the visual approaches to medical image analysis are known to su?er from a lack of reproducibility. A signi?cant researche?ort is devoted to developing algorithms for processing the wealth of data available and extracting the relevant information in a computerized and quantitative fashion. Medical imaging and image analysis are interdisciplinary areas combining electrical, computer, and biomedical engineering; computer science; mathem- ics; physics; statistics; biology; medicine; and other ?elds. Medical imaging and computer vision, interestingly enough, have developed and continue developing somewhat independently. Nevertheless, bringing them together promises to b- e?t both of these ?elds. We were enthusiastic when the organizers of the 2004 European Conference on Computer Vision (ECCV) allowed us to organize a satellite workshop devoted to medical image analysis.

Robust Methods for Dense Monocular Non-Rigid 3D Reconstruction and Alignment of Point Clouds

Robust Methods for Dense Monocular Non-Rigid 3D Reconstruction and Alignment of Point Clouds PDF Author: Vladislav Golyanik
Publisher: Springer Nature
ISBN: 3658305673
Category : Computers
Languages : en
Pages : 352

Book Description
Vladislav Golyanik proposes several new methods for dense non-rigid structure from motion (NRSfM) as well as alignment of point clouds. The introduced methods improve the state of the art in various aspects, i.e. in the ability to handle inaccurate point tracks and 3D data with contaminations. NRSfM with shape priors obtained on-the-fly from several unoccluded frames of the sequence and the new gravitational class of methods for point set alignment represent the primary contributions of this book. About the Author: Vladislav Golyanik is currently a postdoctoral researcher at the Max Planck Institute for Informatics in Saarbrücken, Germany. The current focus of his research lies on 3D reconstruction and analysis of general deformable scenes, 3D reconstruction of human body and matching problems on point sets and graphs. He is interested in machine learning (both supervised and unsupervised), physics-based methods as well as new hardware and sensors for computer vision and graphics (e.g., quantum computers and event cameras).