Mathematical Intuitionism: Introduction to Proof Theory PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Mathematical Intuitionism: Introduction to Proof Theory PDF full book. Access full book title Mathematical Intuitionism: Introduction to Proof Theory by Al'bert Grigor'evi_ Dragalin. Download full books in PDF and EPUB format.

Mathematical Intuitionism: Introduction to Proof Theory

Mathematical Intuitionism: Introduction to Proof Theory PDF Author: Al'bert Grigor'evi_ Dragalin
Publisher: American Mathematical Soc.
ISBN: 0821845209
Category : Mathematics
Languages : en
Pages : 242

Book Description
In the area of mathematical logic, a great deal of attention is now being devoted to the study of nonclassical logics. This book intends to present the most important methods of proof theory in intuitionistic logic and to acquaint the reader with the principal axiomatic theories based on intuitionistic logic.

Mathematical Intuitionism: Introduction to Proof Theory

Mathematical Intuitionism: Introduction to Proof Theory PDF Author: Al'bert Grigor'evi_ Dragalin
Publisher: American Mathematical Soc.
ISBN: 0821845209
Category : Mathematics
Languages : en
Pages : 242

Book Description
In the area of mathematical logic, a great deal of attention is now being devoted to the study of nonclassical logics. This book intends to present the most important methods of proof theory in intuitionistic logic and to acquaint the reader with the principal axiomatic theories based on intuitionistic logic.

An Introduction to Proof Theory

An Introduction to Proof Theory PDF Author: Paolo Mancosu
Publisher: Oxford University Press
ISBN: 0192649299
Category : Philosophy
Languages : en
Pages : 336

Book Description
An Introduction to Proof Theory provides an accessible introduction to the theory of proofs, with details of proofs worked out and examples and exercises to aid the reader's understanding. It also serves as a companion to reading the original pathbreaking articles by Gerhard Gentzen. The first half covers topics in structural proof theory, including the Gödel-Gentzen translation of classical into intuitionistic logic (and arithmetic), natural deduction and the normalization theorems (for both NJ and NK), the sequent calculus, including cut-elimination and mid-sequent theorems, and various applications of these results. The second half examines ordinal proof theory, specifically Gentzen's consistency proof for first-order Peano Arithmetic. The theory of ordinal notations and other elements of ordinal theory are developed from scratch, and no knowledge of set theory is presumed. The proof methods needed to establish proof-theoretic results, especially proof by induction, are introduced in stages throughout the text. Mancosu, Galvan, and Zach's introduction will provide a solid foundation for those looking to understand this central area of mathematical logic and the philosophy of mathematics.

Mathematical Intuitionism

Mathematical Intuitionism PDF Author: Carl J. Posy
Publisher: Cambridge University Press
ISBN: 1108593259
Category : Science
Languages : en
Pages : 116

Book Description
L. E. J. Brouwer, the founder of mathematical intuitionism, believed that mathematics and its objects must be humanly graspable. He initiated a program rebuilding modern mathematics according to that principle. This book introduces the reader to the mathematical core of intuitionism – from elementary number theory through to Brouwer's uniform continuity theorem – and to the two central topics of 'formalized intuitionism': formal intuitionistic logic, and formal systems for intuitionistic analysis. Building on that, the book proposes a systematic, philosophical foundation for intuitionism that weaves together doctrines about human grasp, mathematical objects and mathematical truth.

A Short Introduction to Intuitionistic Logic

A Short Introduction to Intuitionistic Logic PDF Author: Grigori Mints
Publisher: Springer Science & Business Media
ISBN: 0306463946
Category : Computers
Languages : en
Pages : 130

Book Description
Intuitionistic logic is presented here as part of familiar classical logic which allows mechanical extraction of programs from proofs to make the material more accessible. The presentation is based on natural deduction and readers are assumed to be familiar with basic notions of first order logic.

Book of Proof

Book of Proof PDF Author: Richard H. Hammack
Publisher:
ISBN: 9780989472111
Category : Mathematics
Languages : en
Pages : 314

Book Description
This book is an introduction to the language and standard proof methods of mathematics. It is a bridge from the computational courses (such as calculus or differential equations) that students typically encounter in their first year of college to a more abstract outlook. It lays a foundation for more theoretical courses such as topology, analysis and abstract algebra. Although it may be more meaningful to the student who has had some calculus, there is really no prerequisite other than a measure of mathematical maturity.

Handbook of Proof Theory

Handbook of Proof Theory PDF Author: S.R. Buss
Publisher: Elsevier
ISBN: 0080533183
Category : Mathematics
Languages : en
Pages : 823

Book Description
This volume contains articles covering a broad spectrum of proof theory, with an emphasis on its mathematical aspects. The articles should not only be interesting to specialists of proof theory, but should also be accessible to a diverse audience, including logicians, mathematicians, computer scientists and philosophers. Many of the central topics of proof theory have been included in a self-contained expository of articles, covered in great detail and depth.The chapters are arranged so that the two introductory articles come first; these are then followed by articles from core classical areas of proof theory; the handbook concludes with articles that deal with topics closely related to computer science.

Philosophical and Mathematical Logic

Philosophical and Mathematical Logic PDF Author: Harrie de Swart
Publisher: Springer
ISBN: 3030032558
Category : Philosophy
Languages : en
Pages : 558

Book Description
This book was written to serve as an introduction to logic, with in each chapter – if applicable – special emphasis on the interplay between logic and philosophy, mathematics, language and (theoretical) computer science. The reader will not only be provided with an introduction to classical logic, but to philosophical (modal, epistemic, deontic, temporal) and intuitionistic logic as well. The first chapter is an easy to read non-technical Introduction to the topics in the book. The next chapters are consecutively about Propositional Logic, Sets (finite and infinite), Predicate Logic, Arithmetic and Gödel’s Incompleteness Theorems, Modal Logic, Philosophy of Language, Intuitionism and Intuitionistic Logic, Applications (Prolog; Relational Databases and SQL; Social Choice Theory, in particular Majority Judgment) and finally, Fallacies and Unfair Discussion Methods. Throughout the text, the author provides some impressions of the historical development of logic: Stoic and Aristotelian logic, logic in the Middle Ages and Frege's Begriffsschrift, together with the works of George Boole (1815-1864) and August De Morgan (1806-1871), the origin of modern logic. Since "if ..., then ..." can be considered to be the heart of logic, throughout this book much attention is paid to conditionals: material, strict and relevant implication, entailment, counterfactuals and conversational implicature are treated and many references for further reading are given. Each chapter is concluded with answers to the exercises. Philosophical and Mathematical Logic is a very recent book (2018), but with every aspect of a classic. What a wonderful book! Work written with all the necessary rigor, with immense depth, but without giving up clarity and good taste. Philosophy and mathematics go hand in hand with the most diverse themes of logic. An introductory text, but not only that. It goes much further. It's worth diving into the pages of this book, dear reader! Paulo Sérgio Argolo

Elements of Intuitionism

Elements of Intuitionism PDF Author: Michael Dummett
Publisher: Oxford University Press
ISBN: 9780198505242
Category : Mathematics
Languages : en
Pages : 350

Book Description
This is a long-awaited new edition of one of the best known Oxford Logic Guides. The book gives an informal but thorough introduction to intuitionistic mathematics, leading the reader gently through the fundamental mathematical and philosophical concepts. The treatment of various topics has been completely revised for this second edition. Brouwer's proof of the Bar Theorem has been reworked, the account of valuation systems simplified, and the treatment of generalized Beth Trees and the completeness of intuitionistic first-order logic rewritten. Readers are assumed to have some knowledge of classical formal logic and a general awareness of the history of intuitionism.

An Introduction to Mathematical Logic

An Introduction to Mathematical Logic PDF Author: Richard E. Hodel
Publisher: Courier Corporation
ISBN: 0486497852
Category : Mathematics
Languages : en
Pages : 514

Book Description
This comprehensive overview ofmathematical logic is designedprimarily for advanced undergraduatesand graduate studentsof mathematics. The treatmentalso contains much of interest toadvanced students in computerscience and philosophy. Topics include propositional logic;first-order languages and logic; incompleteness, undecidability,and indefinability; recursive functions; computability;and Hilbert’s Tenth Problem.Reprint of the PWS Publishing Company, Boston, 1995edition.

Proofs and Ideas

Proofs and Ideas PDF Author: B. Sethuraman
Publisher: American Mathematical Society
ISBN: 1470465140
Category : Mathematics
Languages : en
Pages : 334

Book Description
Proofs and Ideas serves as a gentle introduction to advanced mathematics for students who previously have not had extensive exposure to proofs. It is intended to ease the student's transition from algorithmic mathematics to the world of mathematics that is built around proofs and concepts. The spirit of the book is that the basic tools of abstract mathematics are best developed in context and that creativity and imagination are at the core of mathematics. So, while the book has chapters on statements and sets and functions and induction, the bulk of the book focuses on core mathematical ideas and on developing intuition. Along with chapters on elementary combinatorics and beginning number theory, this book contains introductory chapters on real analysis, group theory, and graph theory that serve as gentle first exposures to their respective areas. The book contains hundreds of exercises, both routine and non-routine. This book has been used for a transition to advanced mathematics courses at California State University, Northridge, as well as for a general education course on mathematical reasoning at Krea University, India.