Author: Sergio Benenti
Publisher: Springer Nature
ISBN: 3031640330
Category : Einstein field equations
Languages : en
Pages : 161
Book Description
This book is an enhanced and expanded English edition of the treatise "Fondamenti matematici e analisi numerica della dinamica di un Universo isotropo," published by the Accademia delle Scienze di Torino in volume no. 42-43, 2018-2019. The book summarizes some of the principal findings from a long-term cosmology research project, aiming to clarify significant results through clear mathematical postulates. Despite efforts, a single mathematical model accurately describing the universe's evolution remains elusive due to early universe complexity and numerous observational parameters. Over the past century, various models have been proposed and discarded, illustrated by debates on the cosmological constant and spatial curvature assumptions. Currently, many models lack clear foundations, causing confusion in the field. Standard cosmological approaches rely on principles like Weyl's principle, homogeneity, and isotropy, but may overlook discerning purely geometrical properties from those dependent on field equations. This book aims to bring order to cosmology by starting from understandable mathematical postulates, leading to theorems. Disagreements on postulates can prompt adjustments or alternative approaches. Physics often consists of deductive theories lacking explicit delineation of underlying concepts and postulates, a criticism relevant to cosmological theories. Despite a late 1990s consensus on the Lambda cold dark matter model, the absence of a logical-deductive structure in literature complicates understanding, leading some to humorously dub it the "expanding Universe and expanding confusion."
Mathematical Foundations and Numerical Analysis of the Dynamics of an Isotropic Universe
Author: Sergio Benenti
Publisher: Springer Nature
ISBN: 3031640330
Category : Einstein field equations
Languages : en
Pages : 161
Book Description
This book is an enhanced and expanded English edition of the treatise "Fondamenti matematici e analisi numerica della dinamica di un Universo isotropo," published by the Accademia delle Scienze di Torino in volume no. 42-43, 2018-2019. The book summarizes some of the principal findings from a long-term cosmology research project, aiming to clarify significant results through clear mathematical postulates. Despite efforts, a single mathematical model accurately describing the universe's evolution remains elusive due to early universe complexity and numerous observational parameters. Over the past century, various models have been proposed and discarded, illustrated by debates on the cosmological constant and spatial curvature assumptions. Currently, many models lack clear foundations, causing confusion in the field. Standard cosmological approaches rely on principles like Weyl's principle, homogeneity, and isotropy, but may overlook discerning purely geometrical properties from those dependent on field equations. This book aims to bring order to cosmology by starting from understandable mathematical postulates, leading to theorems. Disagreements on postulates can prompt adjustments or alternative approaches. Physics often consists of deductive theories lacking explicit delineation of underlying concepts and postulates, a criticism relevant to cosmological theories. Despite a late 1990s consensus on the Lambda cold dark matter model, the absence of a logical-deductive structure in literature complicates understanding, leading some to humorously dub it the "expanding Universe and expanding confusion."
Publisher: Springer Nature
ISBN: 3031640330
Category : Einstein field equations
Languages : en
Pages : 161
Book Description
This book is an enhanced and expanded English edition of the treatise "Fondamenti matematici e analisi numerica della dinamica di un Universo isotropo," published by the Accademia delle Scienze di Torino in volume no. 42-43, 2018-2019. The book summarizes some of the principal findings from a long-term cosmology research project, aiming to clarify significant results through clear mathematical postulates. Despite efforts, a single mathematical model accurately describing the universe's evolution remains elusive due to early universe complexity and numerous observational parameters. Over the past century, various models have been proposed and discarded, illustrated by debates on the cosmological constant and spatial curvature assumptions. Currently, many models lack clear foundations, causing confusion in the field. Standard cosmological approaches rely on principles like Weyl's principle, homogeneity, and isotropy, but may overlook discerning purely geometrical properties from those dependent on field equations. This book aims to bring order to cosmology by starting from understandable mathematical postulates, leading to theorems. Disagreements on postulates can prompt adjustments or alternative approaches. Physics often consists of deductive theories lacking explicit delineation of underlying concepts and postulates, a criticism relevant to cosmological theories. Despite a late 1990s consensus on the Lambda cold dark matter model, the absence of a logical-deductive structure in literature complicates understanding, leading some to humorously dub it the "expanding Universe and expanding confusion."
Physical Foundations of Cosmology
Author: Viatcheslav Mukhanov
Publisher: Cambridge University Press
ISBN: 1139447114
Category : Science
Languages : en
Pages : 454
Book Description
Inflationary cosmology has been developed over the last twenty years to remedy serious shortcomings in the standard hot big bang model of the universe. This textbook, first published in 2005, explains the basis of modern cosmology and shows where the theoretical results come from. The book is divided into two parts; the first deals with the homogeneous and isotropic model of the Universe, the second part discusses how inhomogeneities can explain its structure. Established material such as the inflation and quantum cosmological perturbation are presented in great detail, however the reader is brought to the frontiers of current cosmological research by the discussion of more speculative ideas. An ideal textbook for both advanced students of physics and astrophysics, all of the necessary background material is included in every chapter and no prior knowledge of general relativity and quantum field theory is assumed.
Publisher: Cambridge University Press
ISBN: 1139447114
Category : Science
Languages : en
Pages : 454
Book Description
Inflationary cosmology has been developed over the last twenty years to remedy serious shortcomings in the standard hot big bang model of the universe. This textbook, first published in 2005, explains the basis of modern cosmology and shows where the theoretical results come from. The book is divided into two parts; the first deals with the homogeneous and isotropic model of the Universe, the second part discusses how inhomogeneities can explain its structure. Established material such as the inflation and quantum cosmological perturbation are presented in great detail, however the reader is brought to the frontiers of current cosmological research by the discussion of more speculative ideas. An ideal textbook for both advanced students of physics and astrophysics, all of the necessary background material is included in every chapter and no prior knowledge of general relativity and quantum field theory is assumed.
Quantum Computing:An Environment for Intelligent Large Scale Real Application
Author: Aboul Ella Hassanien
Publisher: Springer
ISBN: 3319636391
Category : Technology & Engineering
Languages : en
Pages : 502
Book Description
This book highlights practical quantum key distribution systems and research on the implementations of next-generation quantum communication, as well as photonic quantum device technologies. It discusses how the advances in quantum computing and quantum physics have allowed the building, launching and deploying of space exploration systems that are capable of more and more as they become smaller and lighter. It also presents theoretical and experimental research on the potential and limitations of secure communication and computation with quantum devices, and explores how security can be preserved in the presence of a quantum computer, and how to achieve long-distance quantum communication. The development of a real quantum computer is still in the early stages, but a number of research groups have investigated the theoretical possibilities of such computers.
Publisher: Springer
ISBN: 3319636391
Category : Technology & Engineering
Languages : en
Pages : 502
Book Description
This book highlights practical quantum key distribution systems and research on the implementations of next-generation quantum communication, as well as photonic quantum device technologies. It discusses how the advances in quantum computing and quantum physics have allowed the building, launching and deploying of space exploration systems that are capable of more and more as they become smaller and lighter. It also presents theoretical and experimental research on the potential and limitations of secure communication and computation with quantum devices, and explores how security can be preserved in the presence of a quantum computer, and how to achieve long-distance quantum communication. The development of a real quantum computer is still in the early stages, but a number of research groups have investigated the theoretical possibilities of such computers.
Mathematical Reviews
Scientific and Technical Aerospace Reports
A First Course in the Numerical Analysis of Differential Equations
Author: A. Iserles
Publisher: Cambridge University Press
ISBN: 0521734908
Category : Mathematics
Languages : en
Pages : 481
Book Description
lead the reader to a theoretical understanding of the subject without neglecting its practical aspects. The outcome is a textbook that is mathematically honest and rigorous and provides its target audience with a wide range of skills in both ordinary and partial differential equations." --Book Jacket.
Publisher: Cambridge University Press
ISBN: 0521734908
Category : Mathematics
Languages : en
Pages : 481
Book Description
lead the reader to a theoretical understanding of the subject without neglecting its practical aspects. The outcome is a textbook that is mathematically honest and rigorous and provides its target audience with a wide range of skills in both ordinary and partial differential equations." --Book Jacket.
Introduction to Cosmology
Author: Barbara Ryden
Publisher: Cambridge University Press
ISBN: 1107154839
Category : Science
Languages : en
Pages : 277
Book Description
A substantial update of this award-winning and highly regarded cosmology textbook, for advanced undergraduates in physics and astronomy.
Publisher: Cambridge University Press
ISBN: 1107154839
Category : Science
Languages : en
Pages : 277
Book Description
A substantial update of this award-winning and highly regarded cosmology textbook, for advanced undergraduates in physics and astronomy.
Cosmology
Author: Daniel Baumann
Publisher: Cambridge University Press
ISBN: 1108952275
Category : Science
Languages : en
Pages : 486
Book Description
The author – a leading theoretical cosmologist – expands on his widely acclaimed lecture notes in this self-contained textbook, suitable for the advanced undergraduate or starting graduate level. Presenting the key theoretical foundations of cosmology and describing the observations that have turned the subject into a precision science, the author keeps the student in mind on every page by explaining concepts step-by-step, in an approachable manner. After describing the dynamics of the homogeneous universe, the book traces the evolution of small density fluctuations, which were created quantum-mechanically during inflation and are today observed in the cosmic microwave background and the large-scale structure of the universe. The book is ideally suited as a course companion or for self-study. With all necessary background material covered, students have everything they need to establish an unrivalled understanding of the subject. Complete with many worked examples, figures, and homework problems, this textbook is a definitive resource for advanced students in physics, astronomy and applied mathematics.
Publisher: Cambridge University Press
ISBN: 1108952275
Category : Science
Languages : en
Pages : 486
Book Description
The author – a leading theoretical cosmologist – expands on his widely acclaimed lecture notes in this self-contained textbook, suitable for the advanced undergraduate or starting graduate level. Presenting the key theoretical foundations of cosmology and describing the observations that have turned the subject into a precision science, the author keeps the student in mind on every page by explaining concepts step-by-step, in an approachable manner. After describing the dynamics of the homogeneous universe, the book traces the evolution of small density fluctuations, which were created quantum-mechanically during inflation and are today observed in the cosmic microwave background and the large-scale structure of the universe. The book is ideally suited as a course companion or for self-study. With all necessary background material covered, students have everything they need to establish an unrivalled understanding of the subject. Complete with many worked examples, figures, and homework problems, this textbook is a definitive resource for advanced students in physics, astronomy and applied mathematics.
On the Topology and Future Stability of the Universe
Author: Hans Ringström
Publisher: OUP Oxford
ISBN: 0199680299
Category : Science
Languages : en
Pages : 733
Book Description
A general introduction to the initial value problem for Einstein's equations coupled to collisionless matter. The book contains a proof of future stability of models of the universe consistent with the current observational data and a discussion of the restrictions on the possible shapes of the universe imposed by observations.
Publisher: OUP Oxford
ISBN: 0199680299
Category : Science
Languages : en
Pages : 733
Book Description
A general introduction to the initial value problem for Einstein's equations coupled to collisionless matter. The book contains a proof of future stability of models of the universe consistent with the current observational data and a discussion of the restrictions on the possible shapes of the universe imposed by observations.
The Finite Volume Method in Computational Fluid Dynamics
Author: F. Moukalled
Publisher: Springer
ISBN: 3319168746
Category : Technology & Engineering
Languages : en
Pages : 799
Book Description
This textbook explores both the theoretical foundation of the Finite Volume Method (FVM) and its applications in Computational Fluid Dynamics (CFD). Readers will discover a thorough explanation of the FVM numerics and algorithms used for the simulation of incompressible and compressible fluid flows, along with a detailed examination of the components needed for the development of a collocated unstructured pressure-based CFD solver. Two particular CFD codes are explored. The first is uFVM, a three-dimensional unstructured pressure-based finite volume academic CFD code, implemented within Matlab. The second is OpenFOAM®, an open source framework used in the development of a range of CFD programs for the simulation of industrial scale flow problems. With over 220 figures, numerous examples and more than one hundred exercise on FVM numerics, programming, and applications, this textbook is suitable for use in an introductory course on the FVM, in an advanced course on numerics, and as a reference for CFD programmers and researchers.
Publisher: Springer
ISBN: 3319168746
Category : Technology & Engineering
Languages : en
Pages : 799
Book Description
This textbook explores both the theoretical foundation of the Finite Volume Method (FVM) and its applications in Computational Fluid Dynamics (CFD). Readers will discover a thorough explanation of the FVM numerics and algorithms used for the simulation of incompressible and compressible fluid flows, along with a detailed examination of the components needed for the development of a collocated unstructured pressure-based CFD solver. Two particular CFD codes are explored. The first is uFVM, a three-dimensional unstructured pressure-based finite volume academic CFD code, implemented within Matlab. The second is OpenFOAM®, an open source framework used in the development of a range of CFD programs for the simulation of industrial scale flow problems. With over 220 figures, numerous examples and more than one hundred exercise on FVM numerics, programming, and applications, this textbook is suitable for use in an introductory course on the FVM, in an advanced course on numerics, and as a reference for CFD programmers and researchers.