Author: Paolo Aluffi
Publisher: American Mathematical Soc.
ISBN: 147046571X
Category : Education
Languages : en
Pages : 713
Book Description
Algebra: Chapter 0 is a self-contained introduction to the main topics of algebra, suitable for a first sequence on the subject at the beginning graduate or upper undergraduate level. The primary distinguishing feature of the book, compared to standard textbooks in algebra, is the early introduction of categories, used as a unifying theme in the presentation of the main topics. A second feature consists of an emphasis on homological algebra: basic notions on complexes are presented as soon as modules have been introduced, and an extensive last chapter on homological algebra can form the basis for a follow-up introductory course on the subject. Approximately 1,000 exercises both provide adequate practice to consolidate the understanding of the main body of the text and offer the opportunity to explore many other topics, including applications to number theory and algebraic geometry. This will allow instructors to adapt the textbook to their specific choice of topics and provide the independent reader with a richer exposure to algebra. Many exercises include substantial hints, and navigation of the topics is facilitated by an extensive index and by hundreds of cross-references.
Algebra: Chapter 0
Author: Paolo Aluffi
Publisher: American Mathematical Soc.
ISBN: 147046571X
Category : Education
Languages : en
Pages : 713
Book Description
Algebra: Chapter 0 is a self-contained introduction to the main topics of algebra, suitable for a first sequence on the subject at the beginning graduate or upper undergraduate level. The primary distinguishing feature of the book, compared to standard textbooks in algebra, is the early introduction of categories, used as a unifying theme in the presentation of the main topics. A second feature consists of an emphasis on homological algebra: basic notions on complexes are presented as soon as modules have been introduced, and an extensive last chapter on homological algebra can form the basis for a follow-up introductory course on the subject. Approximately 1,000 exercises both provide adequate practice to consolidate the understanding of the main body of the text and offer the opportunity to explore many other topics, including applications to number theory and algebraic geometry. This will allow instructors to adapt the textbook to their specific choice of topics and provide the independent reader with a richer exposure to algebra. Many exercises include substantial hints, and navigation of the topics is facilitated by an extensive index and by hundreds of cross-references.
Publisher: American Mathematical Soc.
ISBN: 147046571X
Category : Education
Languages : en
Pages : 713
Book Description
Algebra: Chapter 0 is a self-contained introduction to the main topics of algebra, suitable for a first sequence on the subject at the beginning graduate or upper undergraduate level. The primary distinguishing feature of the book, compared to standard textbooks in algebra, is the early introduction of categories, used as a unifying theme in the presentation of the main topics. A second feature consists of an emphasis on homological algebra: basic notions on complexes are presented as soon as modules have been introduced, and an extensive last chapter on homological algebra can form the basis for a follow-up introductory course on the subject. Approximately 1,000 exercises both provide adequate practice to consolidate the understanding of the main body of the text and offer the opportunity to explore many other topics, including applications to number theory and algebraic geometry. This will allow instructors to adapt the textbook to their specific choice of topics and provide the independent reader with a richer exposure to algebra. Many exercises include substantial hints, and navigation of the topics is facilitated by an extensive index and by hundreds of cross-references.
Algebra
Author: Thomas W. Hungerford
Publisher: Springer Science & Business Media
ISBN: 1461261015
Category : Mathematics
Languages : en
Pages : 523
Book Description
Finally a self-contained, one volume, graduate-level algebra text that is readable by the average graduate student and flexible enough to accommodate a wide variety of instructors and course contents. The guiding principle throughout is that the material should be presented as general as possible, consistent with good pedagogy. Therefore it stresses clarity rather than brevity and contains an extraordinarily large number of illustrative exercises.
Publisher: Springer Science & Business Media
ISBN: 1461261015
Category : Mathematics
Languages : en
Pages : 523
Book Description
Finally a self-contained, one volume, graduate-level algebra text that is readable by the average graduate student and flexible enough to accommodate a wide variety of instructors and course contents. The guiding principle throughout is that the material should be presented as general as possible, consistent with good pedagogy. Therefore it stresses clarity rather than brevity and contains an extraordinarily large number of illustrative exercises.
Mathematics for Machine Learning
Author: Marc Peter Deisenroth
Publisher: Cambridge University Press
ISBN: 1108569323
Category : Computers
Languages : en
Pages : 392
Book Description
The fundamental mathematical tools needed to understand machine learning include linear algebra, analytic geometry, matrix decompositions, vector calculus, optimization, probability and statistics. These topics are traditionally taught in disparate courses, making it hard for data science or computer science students, or professionals, to efficiently learn the mathematics. This self-contained textbook bridges the gap between mathematical and machine learning texts, introducing the mathematical concepts with a minimum of prerequisites. It uses these concepts to derive four central machine learning methods: linear regression, principal component analysis, Gaussian mixture models and support vector machines. For students and others with a mathematical background, these derivations provide a starting point to machine learning texts. For those learning the mathematics for the first time, the methods help build intuition and practical experience with applying mathematical concepts. Every chapter includes worked examples and exercises to test understanding. Programming tutorials are offered on the book's web site.
Publisher: Cambridge University Press
ISBN: 1108569323
Category : Computers
Languages : en
Pages : 392
Book Description
The fundamental mathematical tools needed to understand machine learning include linear algebra, analytic geometry, matrix decompositions, vector calculus, optimization, probability and statistics. These topics are traditionally taught in disparate courses, making it hard for data science or computer science students, or professionals, to efficiently learn the mathematics. This self-contained textbook bridges the gap between mathematical and machine learning texts, introducing the mathematical concepts with a minimum of prerequisites. It uses these concepts to derive four central machine learning methods: linear regression, principal component analysis, Gaussian mixture models and support vector machines. For students and others with a mathematical background, these derivations provide a starting point to machine learning texts. For those learning the mathematics for the first time, the methods help build intuition and practical experience with applying mathematical concepts. Every chapter includes worked examples and exercises to test understanding. Programming tutorials are offered on the book's web site.
First Course in Mathematical Logic
Author: Patrick Suppes
Publisher: Courier Corporation
ISBN: 0486150941
Category : Mathematics
Languages : en
Pages : 308
Book Description
Rigorous introduction is simple enough in presentation and context for wide range of students. Symbolizing sentences; logical inference; truth and validity; truth tables; terms, predicates, universal quantifiers; universal specification and laws of identity; more.
Publisher: Courier Corporation
ISBN: 0486150941
Category : Mathematics
Languages : en
Pages : 308
Book Description
Rigorous introduction is simple enough in presentation and context for wide range of students. Symbolizing sentences; logical inference; truth and validity; truth tables; terms, predicates, universal quantifiers; universal specification and laws of identity; more.
Exercises in Probability
Author: T. Cacoullos
Publisher: Springer Science & Business Media
ISBN: 1461245265
Category : Mathematics
Languages : en
Pages : 251
Book Description
The author, the founder of the Greek Statistical Institute, has based this book on the two volumes of his Greek edition which has been used by over ten thousand students during the past fifteen years. It can serve as a companion text for an introductory or intermediate level probability course. Those will benefit most who have a good grasp of calculus, yet, many others, with less formal mathematical background can also benefit from the large variety of solved problems ranging from classical combinatorial problems to limit theorems and the law of iterated logarithms. It contains 329 problems with solutions as well as an addendum of over 160 exercises and certain complements of theory and problems.
Publisher: Springer Science & Business Media
ISBN: 1461245265
Category : Mathematics
Languages : en
Pages : 251
Book Description
The author, the founder of the Greek Statistical Institute, has based this book on the two volumes of his Greek edition which has been used by over ten thousand students during the past fifteen years. It can serve as a companion text for an introductory or intermediate level probability course. Those will benefit most who have a good grasp of calculus, yet, many others, with less formal mathematical background can also benefit from the large variety of solved problems ranging from classical combinatorial problems to limit theorems and the law of iterated logarithms. It contains 329 problems with solutions as well as an addendum of over 160 exercises and certain complements of theory and problems.
Advanced Problems in Mathematics
Author: Stephen Siklos
Publisher:
ISBN: 9781783747764
Category : Mathematics
Languages : en
Pages : 188
Book Description
This new and expanded edition is intended to help candidates prepare for entrance examinations in mathematics and scientific subjects, including STEP (Sixth Term Examination Paper). STEP is an examination used by Cambridge Colleges for conditional offers in mathematics. They are also used by some other UK universities and many mathematics departments recommend that their applicants practice on the past papers even if they do not take the examination. Advanced Problems in Mathematics bridges the gap between school and university mathematics, and prepares students for an undergraduate mathematics course. The questions analysed in this book are all based on past STEP questions and each question is followed by a comment and a full solution. The comments direct the reader's attention to key points and put the question in its true mathematical context. The solutions point students to the methodology required to address advanced mathematical problems critically and independently. This book is a must read for any student wishing to apply to scientific subjects at university level and for anyone interested in advanced mathematics.
Publisher:
ISBN: 9781783747764
Category : Mathematics
Languages : en
Pages : 188
Book Description
This new and expanded edition is intended to help candidates prepare for entrance examinations in mathematics and scientific subjects, including STEP (Sixth Term Examination Paper). STEP is an examination used by Cambridge Colleges for conditional offers in mathematics. They are also used by some other UK universities and many mathematics departments recommend that their applicants practice on the past papers even if they do not take the examination. Advanced Problems in Mathematics bridges the gap between school and university mathematics, and prepares students for an undergraduate mathematics course. The questions analysed in this book are all based on past STEP questions and each question is followed by a comment and a full solution. The comments direct the reader's attention to key points and put the question in its true mathematical context. The solutions point students to the methodology required to address advanced mathematical problems critically and independently. This book is a must read for any student wishing to apply to scientific subjects at university level and for anyone interested in advanced mathematics.
Solving Mathematical Problems
Author: Terence Tao
Publisher: OUP Oxford
ISBN: 0191568694
Category : Mathematics
Languages : en
Pages : 116
Book Description
Authored by a leading name in mathematics, this engaging and clearly presented text leads the reader through the tactics involved in solving mathematical problems at the Mathematical Olympiad level. With numerous exercises and assuming only basic mathematics, this text is ideal for students of 14 years and above in pure mathematics.
Publisher: OUP Oxford
ISBN: 0191568694
Category : Mathematics
Languages : en
Pages : 116
Book Description
Authored by a leading name in mathematics, this engaging and clearly presented text leads the reader through the tactics involved in solving mathematical problems at the Mathematical Olympiad level. With numerous exercises and assuming only basic mathematics, this text is ideal for students of 14 years and above in pure mathematics.
Exercises in Modules and Rings
Author: T.Y. Lam
Publisher: Springer Science & Business Media
ISBN: 0387488995
Category : Mathematics
Languages : en
Pages : 427
Book Description
This volume offers a compendium of exercises of varying degree of difficulty in the theory of modules and rings. It is the companion volume to GTM 189. All exercises are solved in full detail. Each section begins with an introduction giving the general background and the theoretical basis for the problems that follow.
Publisher: Springer Science & Business Media
ISBN: 0387488995
Category : Mathematics
Languages : en
Pages : 427
Book Description
This volume offers a compendium of exercises of varying degree of difficulty in the theory of modules and rings. It is the companion volume to GTM 189. All exercises are solved in full detail. Each section begins with an introduction giving the general background and the theoretical basis for the problems that follow.
Problems and Exercises in Discrete Mathematics
Author: G.P. Gavrilov
Publisher: Springer Science & Business Media
ISBN: 9401727708
Category : Mathematics
Languages : en
Pages : 430
Book Description
Many years of practical experience in teaching discrete mathematics form the basis of this text book. Part I contains problems on such topics as Boolean algebra, k-valued logics, graphs and networks, elements of coding theory, automata theory, algorithms theory, combinatorics, Boolean minimization and logical design. The exercises are preceded by ample theoretical background material. For further study the reader is referred to the extensive bibliography. Part II follows the same structure as Part I, and gives helpful hints and solutions. Audience:This book will be of great value to undergraduate students of discrete mathematics, whereas the more difficult exercises, which comprise about one-third of the material, will also appeal to postgraduates and researchers.
Publisher: Springer Science & Business Media
ISBN: 9401727708
Category : Mathematics
Languages : en
Pages : 430
Book Description
Many years of practical experience in teaching discrete mathematics form the basis of this text book. Part I contains problems on such topics as Boolean algebra, k-valued logics, graphs and networks, elements of coding theory, automata theory, algorithms theory, combinatorics, Boolean minimization and logical design. The exercises are preceded by ample theoretical background material. For further study the reader is referred to the extensive bibliography. Part II follows the same structure as Part I, and gives helpful hints and solutions. Audience:This book will be of great value to undergraduate students of discrete mathematics, whereas the more difficult exercises, which comprise about one-third of the material, will also appeal to postgraduates and researchers.
Exercises in (Mathematical) Style
Author: John McCleary
Publisher: The Mathematical Association of America
ISBN: 0883856522
Category : Mathematics
Languages : en
Pages : 289
Book Description
Hover over the image to zoom. Click the image for a popup.Email a Friend About This ItemLogin to Submit a Review inShare John McCleary In Exercises in (Mathematical) Style, the author investigates the world of that familiar set of numbers, the binomial coefficients. While the reader learns some of the properties, relations, and generalizations of the numbers of Pascal's triangle, each story explores a different mode of discourse - from arguing algebraically, combinatorially, geometrically, or by induction, contradiction, or recursion to discovering mathematical facts in poems, music, letters, and various styles of stories. The author follows the example of Raymond Queneau's Exercises in Style, giving the reader 99 stories in various styles. The ubiquitous nature of binomial coefficients leads the tour through combinatorics, number theory, algebra, analysis, and even topology. The book celebrates the joy of writing and the joy of mathematics, found by engaging the rich properties of this simple set of numbers.
Publisher: The Mathematical Association of America
ISBN: 0883856522
Category : Mathematics
Languages : en
Pages : 289
Book Description
Hover over the image to zoom. Click the image for a popup.Email a Friend About This ItemLogin to Submit a Review inShare John McCleary In Exercises in (Mathematical) Style, the author investigates the world of that familiar set of numbers, the binomial coefficients. While the reader learns some of the properties, relations, and generalizations of the numbers of Pascal's triangle, each story explores a different mode of discourse - from arguing algebraically, combinatorially, geometrically, or by induction, contradiction, or recursion to discovering mathematical facts in poems, music, letters, and various styles of stories. The author follows the example of Raymond Queneau's Exercises in Style, giving the reader 99 stories in various styles. The ubiquitous nature of binomial coefficients leads the tour through combinatorics, number theory, algebra, analysis, and even topology. The book celebrates the joy of writing and the joy of mathematics, found by engaging the rich properties of this simple set of numbers.