Author: National Research Council
Publisher: National Academies Press
ISBN: 0309212146
Category : Technology & Engineering
Languages : en
Pages : 214
Book Description
The ongoing development of military aerospace platforms requires continuous technology advances in order to provide the nation's war fighters with the desired advantage. Significant advances in the performance and efficiency of jet and rocket propulsion systems are strongly dependent on the development of lighter more durable high-temperature materials. Materials development has been significantly reduced in the United States since the early 1990s, when the Department of Defense (DOD), the military services, and industry had very active materials development activities to underpin the development of new propulsion systems. This resulted in significant improvements in all engine characteristics and established the United States in global propulsion technology. Many of the significant advances in aircraft and rocket propulsion have been enabled by improved materials and, materials manufacturing processes. To improve efficiency further, engine weight must be reduced while preserving thrust. Materials Needs and Research and Development Strategy for Future Military Aerospace Propulsion Systems examines whether current and planned U.S. efforts are sufficient to meet U.S. military needs while keeping the U.S. on the leading edge of propulsion technology. This report considers mechanisms for the timely insertion of materials in propulsion systems and how these mechanisms might be improved, and describes the general elements of research and development strategies to develop materials for future military aerospace propulsion systems. The conclusions and recommendations asserted in this report will enhance the efficiency, level of effort, and impact of DOD materials development activities.
Materials Needs and R&D Strategy for Future Military Aerospace Propulsion Systems
Author: National Research Council
Publisher: National Academies Press
ISBN: 0309212146
Category : Technology & Engineering
Languages : en
Pages : 214
Book Description
The ongoing development of military aerospace platforms requires continuous technology advances in order to provide the nation's war fighters with the desired advantage. Significant advances in the performance and efficiency of jet and rocket propulsion systems are strongly dependent on the development of lighter more durable high-temperature materials. Materials development has been significantly reduced in the United States since the early 1990s, when the Department of Defense (DOD), the military services, and industry had very active materials development activities to underpin the development of new propulsion systems. This resulted in significant improvements in all engine characteristics and established the United States in global propulsion technology. Many of the significant advances in aircraft and rocket propulsion have been enabled by improved materials and, materials manufacturing processes. To improve efficiency further, engine weight must be reduced while preserving thrust. Materials Needs and Research and Development Strategy for Future Military Aerospace Propulsion Systems examines whether current and planned U.S. efforts are sufficient to meet U.S. military needs while keeping the U.S. on the leading edge of propulsion technology. This report considers mechanisms for the timely insertion of materials in propulsion systems and how these mechanisms might be improved, and describes the general elements of research and development strategies to develop materials for future military aerospace propulsion systems. The conclusions and recommendations asserted in this report will enhance the efficiency, level of effort, and impact of DOD materials development activities.
Publisher: National Academies Press
ISBN: 0309212146
Category : Technology & Engineering
Languages : en
Pages : 214
Book Description
The ongoing development of military aerospace platforms requires continuous technology advances in order to provide the nation's war fighters with the desired advantage. Significant advances in the performance and efficiency of jet and rocket propulsion systems are strongly dependent on the development of lighter more durable high-temperature materials. Materials development has been significantly reduced in the United States since the early 1990s, when the Department of Defense (DOD), the military services, and industry had very active materials development activities to underpin the development of new propulsion systems. This resulted in significant improvements in all engine characteristics and established the United States in global propulsion technology. Many of the significant advances in aircraft and rocket propulsion have been enabled by improved materials and, materials manufacturing processes. To improve efficiency further, engine weight must be reduced while preserving thrust. Materials Needs and Research and Development Strategy for Future Military Aerospace Propulsion Systems examines whether current and planned U.S. efforts are sufficient to meet U.S. military needs while keeping the U.S. on the leading edge of propulsion technology. This report considers mechanisms for the timely insertion of materials in propulsion systems and how these mechanisms might be improved, and describes the general elements of research and development strategies to develop materials for future military aerospace propulsion systems. The conclusions and recommendations asserted in this report will enhance the efficiency, level of effort, and impact of DOD materials development activities.
Materials Needs and R&D Strategy for Future Military Aerospace Propulsion Systems
Author: National Research Council
Publisher: National Academies Press
ISBN: 0309212111
Category : Technology & Engineering
Languages : en
Pages : 214
Book Description
The ongoing development of military aerospace platforms requires continuous technology advances in order to provide the nation's war fighters with the desired advantage. Significant advances in the performance and efficiency of jet and rocket propulsion systems are strongly dependent on the development of lighter more durable high-temperature materials. Materials development has been significantly reduced in the United States since the early 1990s, when the Department of Defense (DOD), the military services, and industry had very active materials development activities to underpin the development of new propulsion systems. This resulted in significant improvements in all engine characteristics and established the United States in global propulsion technology. Many of the significant advances in aircraft and rocket propulsion have been enabled by improved materials and, materials manufacturing processes. To improve efficiency further, engine weight must be reduced while preserving thrust. Materials Needs and Research and Development Strategy for Future Military Aerospace Propulsion Systems examines whether current and planned U.S. efforts are sufficient to meet U.S. military needs while keeping the U.S. on the leading edge of propulsion technology. This report considers mechanisms for the timely insertion of materials in propulsion systems and how these mechanisms might be improved, and describes the general elements of research and development strategies to develop materials for future military aerospace propulsion systems. The conclusions and recommendations asserted in this report will enhance the efficiency, level of effort, and impact of DOD materials development activities.
Publisher: National Academies Press
ISBN: 0309212111
Category : Technology & Engineering
Languages : en
Pages : 214
Book Description
The ongoing development of military aerospace platforms requires continuous technology advances in order to provide the nation's war fighters with the desired advantage. Significant advances in the performance and efficiency of jet and rocket propulsion systems are strongly dependent on the development of lighter more durable high-temperature materials. Materials development has been significantly reduced in the United States since the early 1990s, when the Department of Defense (DOD), the military services, and industry had very active materials development activities to underpin the development of new propulsion systems. This resulted in significant improvements in all engine characteristics and established the United States in global propulsion technology. Many of the significant advances in aircraft and rocket propulsion have been enabled by improved materials and, materials manufacturing processes. To improve efficiency further, engine weight must be reduced while preserving thrust. Materials Needs and Research and Development Strategy for Future Military Aerospace Propulsion Systems examines whether current and planned U.S. efforts are sufficient to meet U.S. military needs while keeping the U.S. on the leading edge of propulsion technology. This report considers mechanisms for the timely insertion of materials in propulsion systems and how these mechanisms might be improved, and describes the general elements of research and development strategies to develop materials for future military aerospace propulsion systems. The conclusions and recommendations asserted in this report will enhance the efficiency, level of effort, and impact of DOD materials development activities.
The Future of Military Engines
Author: Andrew P. Hunter
Publisher: Rowman & Littlefield
ISBN: 1538140349
Category : Political Science
Languages : en
Pages : 83
Book Description
CSIS's The Future of Military Engines looks at the state of the U.S. military engine industrial base and the choices confronting policymakers at the Department of Defense (DoD). The military engine industrial base is closely tied to the industrial base for commercial engines. U.S. engine providers use many of the same facilities and largely the same supply chain for military and commercial engines. The ability to leverage commercial supply chains is critical because supply chain quality underlies the performance advantage of U.S. military engines, both for individual aircraft and military aircraft fleets. International competitors such as Russia and China are seeking to overtake the U.S. in engines. However, the current U.S. advantage is sustainable if it is treated as a national priority. Many military aircraft, especially fighters, require engines with important differences from commercial aircraft. They fly different flight profiles and perform different jobs. These differences mean that while DoD can leverage the commercial engine industrial base, it must also make investments to sustain the industrial base’s unique military components. In the next few years, DoD investment in military engines is projected to decrease significantly, particularly for R&D. This presents a challenge as military-unique engineering skills are highly perishable. Four major policy choices confront DoD as it formulates its investment approach to military engines going forward: 1) Priority, 2) Resources, 3) Business Model, and 4) Competition. The DoD is at an inflection point for engine investment, and the time for choosing on these four key policy questions will come in the next few years.
Publisher: Rowman & Littlefield
ISBN: 1538140349
Category : Political Science
Languages : en
Pages : 83
Book Description
CSIS's The Future of Military Engines looks at the state of the U.S. military engine industrial base and the choices confronting policymakers at the Department of Defense (DoD). The military engine industrial base is closely tied to the industrial base for commercial engines. U.S. engine providers use many of the same facilities and largely the same supply chain for military and commercial engines. The ability to leverage commercial supply chains is critical because supply chain quality underlies the performance advantage of U.S. military engines, both for individual aircraft and military aircraft fleets. International competitors such as Russia and China are seeking to overtake the U.S. in engines. However, the current U.S. advantage is sustainable if it is treated as a national priority. Many military aircraft, especially fighters, require engines with important differences from commercial aircraft. They fly different flight profiles and perform different jobs. These differences mean that while DoD can leverage the commercial engine industrial base, it must also make investments to sustain the industrial base’s unique military components. In the next few years, DoD investment in military engines is projected to decrease significantly, particularly for R&D. This presents a challenge as military-unique engineering skills are highly perishable. Four major policy choices confront DoD as it formulates its investment approach to military engines going forward: 1) Priority, 2) Resources, 3) Business Model, and 4) Competition. The DoD is at an inflection point for engine investment, and the time for choosing on these four key policy questions will come in the next few years.
A Review of United States Air Force and Department of Defense Aerospace Propulsion Needs
Author: National Research Council
Publisher: National Academies Press
ISBN: 0309102472
Category : Technology & Engineering
Languages : en
Pages : 288
Book Description
Rocket and air-breathing propulsion systems are the foundation on which planning for future aerospace systems rests. A Review of United States Air Force and Department of Defense Aerospace Propulsion Needs assesses the existing technical base in these areas and examines the future Air Force capabilities the base will be expected to support. This report also defines gaps and recommends where future warfighter capabilities not yet fully defined could be met by current science and technology development plans.
Publisher: National Academies Press
ISBN: 0309102472
Category : Technology & Engineering
Languages : en
Pages : 288
Book Description
Rocket and air-breathing propulsion systems are the foundation on which planning for future aerospace systems rests. A Review of United States Air Force and Department of Defense Aerospace Propulsion Needs assesses the existing technical base in these areas and examines the future Air Force capabilities the base will be expected to support. This report also defines gaps and recommends where future warfighter capabilities not yet fully defined could be met by current science and technology development plans.
Examination of the U.S. Air Force's Aircraft Sustainment Needs in the Future and Its Strategy to Meet Those Needs
Author: National Research Council
Publisher: National Academies Press
ISBN: 030921520X
Category : Technology & Engineering
Languages : en
Pages : 254
Book Description
The ability of the United States Air Force (USAF) to keep its aircraft operating at an acceptable operational tempo, in wartime and in peacetime, has been important to the Air Force since its inception. This is a much larger issue for the Air Force today, having effectively been at war for 20 years, with its aircraft becoming increasingly more expensive to operate and maintain and with military budgets certain to further decrease. The enormously complex Air Force weapon system sustainment enterprise is currently constrained on many sides by laws, policies, regulations and procedures, relationships, and organizational issues emanating from Congress, the Department of Defense (DoD), and the Air Force itself. Against the back-drop of these stark realities, the Air Force requested the National Research Council (NRC) of the National Academies, under the auspices of the Air Force Studies Board to conduct and in-depth assessment of current and future Air Force weapon system sustainment initiatives and recommended future courses of action for consideration by the Air Force. Examination of the U.S. Air Force's Aircraft Sustainment Needs in the Future and Its Strategy to Meet Those Needs addresses the following topics: Assess current sustainment investments, infrastructure, and processes for adequacy in sustaining aging legacy systems and their support equipment. Determine if any modifications in policy are required and, if so, identify them and make recommendations for changes in Air Force regulations, policies, and strategies to accomplish the sustainment goals of the Air Force. Determine if any modifications in technology efforts are required and, if so, identify them and make recommendations regarding the technology efforts that should be pursued because they could make positive impacts on the sustainment of the current and future systems and equipment of the Air Force. Determine if the Air Logistics Centers have the necessary resources (funding, manpower, skill sets, and technologies) and are equipped and organized to sustain legacy systems and equipment and the Air Force of tomorrow. Identify and make recommendations regarding incorporating sustainability into future aircraft designs.
Publisher: National Academies Press
ISBN: 030921520X
Category : Technology & Engineering
Languages : en
Pages : 254
Book Description
The ability of the United States Air Force (USAF) to keep its aircraft operating at an acceptable operational tempo, in wartime and in peacetime, has been important to the Air Force since its inception. This is a much larger issue for the Air Force today, having effectively been at war for 20 years, with its aircraft becoming increasingly more expensive to operate and maintain and with military budgets certain to further decrease. The enormously complex Air Force weapon system sustainment enterprise is currently constrained on many sides by laws, policies, regulations and procedures, relationships, and organizational issues emanating from Congress, the Department of Defense (DoD), and the Air Force itself. Against the back-drop of these stark realities, the Air Force requested the National Research Council (NRC) of the National Academies, under the auspices of the Air Force Studies Board to conduct and in-depth assessment of current and future Air Force weapon system sustainment initiatives and recommended future courses of action for consideration by the Air Force. Examination of the U.S. Air Force's Aircraft Sustainment Needs in the Future and Its Strategy to Meet Those Needs addresses the following topics: Assess current sustainment investments, infrastructure, and processes for adequacy in sustaining aging legacy systems and their support equipment. Determine if any modifications in policy are required and, if so, identify them and make recommendations for changes in Air Force regulations, policies, and strategies to accomplish the sustainment goals of the Air Force. Determine if any modifications in technology efforts are required and, if so, identify them and make recommendations regarding the technology efforts that should be pursued because they could make positive impacts on the sustainment of the current and future systems and equipment of the Air Force. Determine if the Air Logistics Centers have the necessary resources (funding, manpower, skill sets, and technologies) and are equipped and organized to sustain legacy systems and equipment and the Air Force of tomorrow. Identify and make recommendations regarding incorporating sustainability into future aircraft designs.
Materials Science and Engineering
Author: National Research Council
Publisher: National Academies Press
ISBN: 0309068266
Category : Technology & Engineering
Languages : en
Pages : 125
Book Description
Materials are the foundation and fabric of manufactured products. In fact, many leading commercial products and military systems could not exist without advanced materials and many of the new products critical to the nation's continued prosperity will come only through the development and commercialization of new materials. Thus, the field of materials science and engineering (MS&E) affects quality of life, industrial competitiveness, and the global environment. The United States leads the world in materials research and development, but does not have as impressive a record in the commercialization of new materials. This book explores the relationships among the producers and users of materials and examines the processes of innovationâ€"from the generation of knowledge to the ultimate integration of a material into a useful product. The authors recommend ways to accelerate the rate at which new ideas are integrated into finished products. Real-life case studies provide an accurate depiction of the processes that take materials and process innovations from the laboratory, to the factory floor, and ultimately to the consumer, drawing on experiences with three distinctive MS&E applicationsâ€"advanced aircraft turbines, automobiles, and computer chips and information-storage devices.
Publisher: National Academies Press
ISBN: 0309068266
Category : Technology & Engineering
Languages : en
Pages : 125
Book Description
Materials are the foundation and fabric of manufactured products. In fact, many leading commercial products and military systems could not exist without advanced materials and many of the new products critical to the nation's continued prosperity will come only through the development and commercialization of new materials. Thus, the field of materials science and engineering (MS&E) affects quality of life, industrial competitiveness, and the global environment. The United States leads the world in materials research and development, but does not have as impressive a record in the commercialization of new materials. This book explores the relationships among the producers and users of materials and examines the processes of innovationâ€"from the generation of knowledge to the ultimate integration of a material into a useful product. The authors recommend ways to accelerate the rate at which new ideas are integrated into finished products. Real-life case studies provide an accurate depiction of the processes that take materials and process innovations from the laboratory, to the factory floor, and ultimately to the consumer, drawing on experiences with three distinctive MS&E applicationsâ€"advanced aircraft turbines, automobiles, and computer chips and information-storage devices.
Aerospace Propulsion Systems
Author: Thomas A. Ward
Publisher: John Wiley & Sons
ISBN: 0470824972
Category : Technology & Engineering
Languages : en
Pages : 557
Book Description
Aerospace Propulsion Systems is a unique book focusing on each type of propulsion system commonly used in aerospace vehicles today: rockets, piston aero engines, gas turbine engines, ramjets, and scramjets. Dr. Thomas A. Ward introduces each system in detail, imparting an understanding of basic engineering principles, describing key functionality mechanisms used in past and modern designs, and provides guidelines for student design projects. With a balance of theory, fundamental performance analysis, and design, the book is specifically targeted to students or professionals who are new to the field and is arranged in an intuitive, systematic format to enhance learning. Covers all engine types, including piston aero engines Design principles presented in historical order for progressive understanding Focuses on major elements to avoid overwhelming or confusing readers Presents example systems from the US, the UK, Germany, Russia, Europe, China, Japan, and India Richly illustrated with detailed photographs Cartoon panels present the subject in an interesting, easy-to-understand way Contains carefully constructed problems (with a solution manual available to the educator) Lecture slides and additional problem sets for instructor use Advanced undergraduate students, graduate students and engineering professionals new to the area of propulsion will find Aerospace Propulsion Systems a highly accessible guide to grasping the key essentials. Field experts will also find that the book is a very useful resource for explaining propulsion issues or technology to engineers, technicians, businessmen, or policy makers. Post-graduates involved in multi-disciplinary research or anybody interested in learning more about spacecraft, aircraft, or engineering would find this book to be a helpful reference. Lecture materials for instructors available at www.wiley.com/go/wardaero
Publisher: John Wiley & Sons
ISBN: 0470824972
Category : Technology & Engineering
Languages : en
Pages : 557
Book Description
Aerospace Propulsion Systems is a unique book focusing on each type of propulsion system commonly used in aerospace vehicles today: rockets, piston aero engines, gas turbine engines, ramjets, and scramjets. Dr. Thomas A. Ward introduces each system in detail, imparting an understanding of basic engineering principles, describing key functionality mechanisms used in past and modern designs, and provides guidelines for student design projects. With a balance of theory, fundamental performance analysis, and design, the book is specifically targeted to students or professionals who are new to the field and is arranged in an intuitive, systematic format to enhance learning. Covers all engine types, including piston aero engines Design principles presented in historical order for progressive understanding Focuses on major elements to avoid overwhelming or confusing readers Presents example systems from the US, the UK, Germany, Russia, Europe, China, Japan, and India Richly illustrated with detailed photographs Cartoon panels present the subject in an interesting, easy-to-understand way Contains carefully constructed problems (with a solution manual available to the educator) Lecture slides and additional problem sets for instructor use Advanced undergraduate students, graduate students and engineering professionals new to the area of propulsion will find Aerospace Propulsion Systems a highly accessible guide to grasping the key essentials. Field experts will also find that the book is a very useful resource for explaining propulsion issues or technology to engineers, technicians, businessmen, or policy makers. Post-graduates involved in multi-disciplinary research or anybody interested in learning more about spacecraft, aircraft, or engineering would find this book to be a helpful reference. Lecture materials for instructors available at www.wiley.com/go/wardaero
Advanced Aero-engine Concepts and Controls
Author: North Atlantic Treaty Organization. Advisory Group for Aerospace Research and Development. Propulsion and Energetics Panel. Symposium
Publisher:
ISBN:
Category : Airplanes
Languages : en
Pages : 432
Book Description
Publisher:
ISBN:
Category : Airplanes
Languages : en
Pages : 432
Book Description
Army, Navy, Air Force Journal & Register
Force Multiplying Technologies for Logistics Support to Military Operations
Author: National Research Council
Publisher: National Academies Press
ISBN: 0309307368
Category : Technology & Engineering
Languages : en
Pages : 293
Book Description
The mission of the United States Army is to fight and win our nation's wars by providing prompt, sustained land dominance across the full range of military operations and spectrum of conflict in support of combatant commanders. Accomplishing this mission rests on the ability of the Army to equip and move its forces to the battle and sustain them while they are engaged. Logistics provides the backbone for Army combat operations. Without fuel, ammunition, rations, and other supplies, the Army would grind to a halt. The U.S. military must be prepared to fight anywhere on the globe and, in an era of coalition warfare, to logistically support its allies. While aircraft can move large amounts of supplies, the vast majority must be carried on ocean going vessels and unloaded at ports that may be at a great distance from the battlefield. As the wars in Afghanistan and Iraq have shown, the costs of convoying vast quantities of supplies is tallied not only in economic terms but also in terms of lives lost in the movement of the materiel. As the ability of potential enemies to interdict movement to the battlefield and interdict movements in the battlespace increases, the challenge of logistics grows even larger. No matter how the nature of battle develops, logistics will remain a key factor. Force Multiplying Technologies for Logistics Support to Military Operations explores Army logistics in a global, complex environment that includes the increasing use of antiaccess and area-denial tactics and technologies by potential adversaries. This report describes new technologies and systems that would reduce the demand for logistics and meet the demand at the point of need, make maintenance more efficient, improve inter- and intratheater mobility, and improve near-real-time, in-transit visibility. Force Multiplying Technologies also explores options for the Army to operate with the other services and improve its support of Special Operations Forces. This report provides a logistics-centric research and development investment strategy and illustrative examples of how improved logistics could look in the future.
Publisher: National Academies Press
ISBN: 0309307368
Category : Technology & Engineering
Languages : en
Pages : 293
Book Description
The mission of the United States Army is to fight and win our nation's wars by providing prompt, sustained land dominance across the full range of military operations and spectrum of conflict in support of combatant commanders. Accomplishing this mission rests on the ability of the Army to equip and move its forces to the battle and sustain them while they are engaged. Logistics provides the backbone for Army combat operations. Without fuel, ammunition, rations, and other supplies, the Army would grind to a halt. The U.S. military must be prepared to fight anywhere on the globe and, in an era of coalition warfare, to logistically support its allies. While aircraft can move large amounts of supplies, the vast majority must be carried on ocean going vessels and unloaded at ports that may be at a great distance from the battlefield. As the wars in Afghanistan and Iraq have shown, the costs of convoying vast quantities of supplies is tallied not only in economic terms but also in terms of lives lost in the movement of the materiel. As the ability of potential enemies to interdict movement to the battlefield and interdict movements in the battlespace increases, the challenge of logistics grows even larger. No matter how the nature of battle develops, logistics will remain a key factor. Force Multiplying Technologies for Logistics Support to Military Operations explores Army logistics in a global, complex environment that includes the increasing use of antiaccess and area-denial tactics and technologies by potential adversaries. This report describes new technologies and systems that would reduce the demand for logistics and meet the demand at the point of need, make maintenance more efficient, improve inter- and intratheater mobility, and improve near-real-time, in-transit visibility. Force Multiplying Technologies also explores options for the Army to operate with the other services and improve its support of Special Operations Forces. This report provides a logistics-centric research and development investment strategy and illustrative examples of how improved logistics could look in the future.