Author: Robert Odette
Publisher: Newnes
ISBN: 012397349X
Category : Technology & Engineering
Languages : en
Pages : 676
Book Description
High-performance alloys that can withstand operation in hazardous nuclear environments are critical to presentday in-service reactor support and maintenance and are foundational for reactor concepts of the future. With commercial nuclear energy vendors and operators facing the retirement of staff during the coming decades, much of the scholarly knowledge of nuclear materials pursuant to appropriate, impactful, and safe usage is at risk. Led by the multi-award winning editorial team of G. Robert Odette (UCSB) and Steven J. Zinkle (UTK/ORNL) and with contributions from leaders of each alloy discipline, Structural Alloys for Nuclear Energy Applications aids the next generation of researchers and industry staff developing and maintaining steels, nickel-base alloys, zirconium alloys, and other structural alloys in nuclear energy applications. This authoritative reference is a critical acquisition for institutions and individuals seeking state-of-the-art knowledge aided by the editors' unique personal insight from decades of frontline research, engineering and management. - Focuses on in-service irradiation, thermal, mechanical, and chemical performance capabilities. - Covers the use of steels and other structural alloys in current fission technology, leading edge Generation-IV fission reactors, and future fusion power reactors. - Provides a critical and comprehensive review of the state-of-the-art experimental knowledge base of reactor materials, for applications ranging from engineering safety and lifetime assessments to supporting the development of advanced computational models.
Structural Alloys for Nuclear Energy Applications
Author: Robert Odette
Publisher: Newnes
ISBN: 012397349X
Category : Technology & Engineering
Languages : en
Pages : 676
Book Description
High-performance alloys that can withstand operation in hazardous nuclear environments are critical to presentday in-service reactor support and maintenance and are foundational for reactor concepts of the future. With commercial nuclear energy vendors and operators facing the retirement of staff during the coming decades, much of the scholarly knowledge of nuclear materials pursuant to appropriate, impactful, and safe usage is at risk. Led by the multi-award winning editorial team of G. Robert Odette (UCSB) and Steven J. Zinkle (UTK/ORNL) and with contributions from leaders of each alloy discipline, Structural Alloys for Nuclear Energy Applications aids the next generation of researchers and industry staff developing and maintaining steels, nickel-base alloys, zirconium alloys, and other structural alloys in nuclear energy applications. This authoritative reference is a critical acquisition for institutions and individuals seeking state-of-the-art knowledge aided by the editors' unique personal insight from decades of frontline research, engineering and management. - Focuses on in-service irradiation, thermal, mechanical, and chemical performance capabilities. - Covers the use of steels and other structural alloys in current fission technology, leading edge Generation-IV fission reactors, and future fusion power reactors. - Provides a critical and comprehensive review of the state-of-the-art experimental knowledge base of reactor materials, for applications ranging from engineering safety and lifetime assessments to supporting the development of advanced computational models.
Publisher: Newnes
ISBN: 012397349X
Category : Technology & Engineering
Languages : en
Pages : 676
Book Description
High-performance alloys that can withstand operation in hazardous nuclear environments are critical to presentday in-service reactor support and maintenance and are foundational for reactor concepts of the future. With commercial nuclear energy vendors and operators facing the retirement of staff during the coming decades, much of the scholarly knowledge of nuclear materials pursuant to appropriate, impactful, and safe usage is at risk. Led by the multi-award winning editorial team of G. Robert Odette (UCSB) and Steven J. Zinkle (UTK/ORNL) and with contributions from leaders of each alloy discipline, Structural Alloys for Nuclear Energy Applications aids the next generation of researchers and industry staff developing and maintaining steels, nickel-base alloys, zirconium alloys, and other structural alloys in nuclear energy applications. This authoritative reference is a critical acquisition for institutions and individuals seeking state-of-the-art knowledge aided by the editors' unique personal insight from decades of frontline research, engineering and management. - Focuses on in-service irradiation, thermal, mechanical, and chemical performance capabilities. - Covers the use of steels and other structural alloys in current fission technology, leading edge Generation-IV fission reactors, and future fusion power reactors. - Provides a critical and comprehensive review of the state-of-the-art experimental knowledge base of reactor materials, for applications ranging from engineering safety and lifetime assessments to supporting the development of advanced computational models.
Structural Materials for Generation IV Nuclear Reactors
Author: Pascal Yvon
Publisher: Woodhead Publishing
ISBN: 0081009127
Category : Technology & Engineering
Languages : en
Pages : 686
Book Description
Operating at a high level of fuel efficiency, safety, proliferation-resistance, sustainability and cost, generation IV nuclear reactors promise enhanced features to an energy resource which is already seen as an outstanding source of reliable base load power. The performance and reliability of materials when subjected to the higher neutron doses and extremely corrosive higher temperature environments that will be found in generation IV nuclear reactors are essential areas of study, as key considerations for the successful development of generation IV reactors are suitable structural materials for both in-core and out-of-core applications. Structural Materials for Generation IV Nuclear Reactors explores the current state-of-the art in these areas. Part One reviews the materials, requirements and challenges in generation IV systems. Part Two presents the core materials with chapters on irradiation resistant austenitic steels, ODS/FM steels and refractory metals amongst others. Part Three looks at out-of-core materials. Structural Materials for Generation IV Nuclear Reactors is an essential reference text for professional scientists, engineers and postgraduate researchers involved in the development of generation IV nuclear reactors. - Introduces the higher neutron doses and extremely corrosive higher temperature environments that will be found in generation IV nuclear reactors and implications for structural materials - Contains chapters on the key core and out-of-core materials, from steels to advanced micro-laminates - Written by an expert in that particular area
Publisher: Woodhead Publishing
ISBN: 0081009127
Category : Technology & Engineering
Languages : en
Pages : 686
Book Description
Operating at a high level of fuel efficiency, safety, proliferation-resistance, sustainability and cost, generation IV nuclear reactors promise enhanced features to an energy resource which is already seen as an outstanding source of reliable base load power. The performance and reliability of materials when subjected to the higher neutron doses and extremely corrosive higher temperature environments that will be found in generation IV nuclear reactors are essential areas of study, as key considerations for the successful development of generation IV reactors are suitable structural materials for both in-core and out-of-core applications. Structural Materials for Generation IV Nuclear Reactors explores the current state-of-the art in these areas. Part One reviews the materials, requirements and challenges in generation IV systems. Part Two presents the core materials with chapters on irradiation resistant austenitic steels, ODS/FM steels and refractory metals amongst others. Part Three looks at out-of-core materials. Structural Materials for Generation IV Nuclear Reactors is an essential reference text for professional scientists, engineers and postgraduate researchers involved in the development of generation IV nuclear reactors. - Introduces the higher neutron doses and extremely corrosive higher temperature environments that will be found in generation IV nuclear reactors and implications for structural materials - Contains chapters on the key core and out-of-core materials, from steels to advanced micro-laminates - Written by an expert in that particular area
Accident-Tolerant Materials for Light Water Reactor Fuels
Author: Raul B. Rebak
Publisher: Elsevier
ISBN: 0128175044
Category : Technology & Engineering
Languages : en
Pages : 237
Book Description
Accident Tolerant Materials for Light Water Reactor Fuels provides a description of what an accident tolerant fuel is and the benefits and detriments of each concept. The book begins with an introduction to nuclear power as a renewable energy source and the current materials being utilized in light water reactors. It then moves on to discuss the recent advancements being made in accident tolerant fuels, reviewing the specific materials, their fabrication and implementation, environmental resistance, irradiation behavior, and licensing requirements. The book concludes with a look to the future of new power generation technologies. It is written for scientists and engineers working in the nuclear power industry and is the first comprehensive work on this topic. - Introduces the fundamental description of accident tolerant fuel, including fabrication and implementation - Describes both the benefits and detriments of the various Accident Tolerant Fuel concepts - Includes information on the process of materials selection with a discussion of how and why specific materials were chosen, as well as why others failed
Publisher: Elsevier
ISBN: 0128175044
Category : Technology & Engineering
Languages : en
Pages : 237
Book Description
Accident Tolerant Materials for Light Water Reactor Fuels provides a description of what an accident tolerant fuel is and the benefits and detriments of each concept. The book begins with an introduction to nuclear power as a renewable energy source and the current materials being utilized in light water reactors. It then moves on to discuss the recent advancements being made in accident tolerant fuels, reviewing the specific materials, their fabrication and implementation, environmental resistance, irradiation behavior, and licensing requirements. The book concludes with a look to the future of new power generation technologies. It is written for scientists and engineers working in the nuclear power industry and is the first comprehensive work on this topic. - Introduces the fundamental description of accident tolerant fuel, including fabrication and implementation - Describes both the benefits and detriments of the various Accident Tolerant Fuel concepts - Includes information on the process of materials selection with a discussion of how and why specific materials were chosen, as well as why others failed
NUREG/CR.
Author: U.S. Nuclear Regulatory Commission
Publisher:
ISBN:
Category : Nuclear energy
Languages : en
Pages : 16
Book Description
Publisher:
ISBN:
Category : Nuclear energy
Languages : en
Pages : 16
Book Description
Materials for Nuclear Reactor Core Applications
Author:
Publisher: Thomas Telford Publishing
ISBN:
Category : Technology & Engineering
Languages : en
Pages : 372
Book Description
Proceedings of an international conference held in Bristol on 27-29 October 1987.
Publisher: Thomas Telford Publishing
ISBN:
Category : Technology & Engineering
Languages : en
Pages : 372
Book Description
Proceedings of an international conference held in Bristol on 27-29 October 1987.
Nuclear Materials
Author: Pavel V. Tsvetkov
Publisher: BoD – Books on Demand
ISBN: 1839623713
Category : Nuclear chemistry
Languages : en
Pages : 151
Book Description
This book examines nuclear materials through select chapters focusing on the impact of reactor technology, use of materials data in modeling applications, and reasoning in design choices. It provides an opportunity to explore contemporary and emerging frontiers. Chapters cover such topics as manufacturing approaches, forms, fundamental considerations, and applications as well as highlight contemporary pathways in nuclear material development.
Publisher: BoD – Books on Demand
ISBN: 1839623713
Category : Nuclear chemistry
Languages : en
Pages : 151
Book Description
This book examines nuclear materials through select chapters focusing on the impact of reactor technology, use of materials data in modeling applications, and reasoning in design choices. It provides an opportunity to explore contemporary and emerging frontiers. Chapters cover such topics as manufacturing approaches, forms, fundamental considerations, and applications as well as highlight contemporary pathways in nuclear material development.
Characterization and Testing of Materials for Nuclear Reactors
Author: International Atomic Energy Agency
Publisher:
ISBN:
Category : Business & Economics
Languages : en
Pages : 158
Book Description
Industrial growth, energy consumption are seen as measures towards economic developments. With increase in industrial development worldwide, the demand of energy is continually on the rise. Today, the energy industry is facing many challenges. Nuclear fission and nuclear fusion are seen as important future energy sources. Development of innovative reactor designs with large efficiency for fuel burn up is one of the needs of fission reactors. The materials resistant to high dose of radiations in fusion reactors is another major challenge. The production of electricity without global warming is an important pressing demand on the energy sector. The demands on quality control of components for nuclear and heavy industry are very stringent. Development of well characterized, high quality materials is therefore essential for safe, efficient and reliable operation of engineering components. The diagnosis of failure of machinery parts comes from the post operational characterization of materials. Various destructive and non-destructive techniques are used for this purpose. Research reactors have played an important role in non-destructive characterization of materials and have contributed to technology development. This publication focuses on characterization of materials for industries in general and nuclear energy sector in particular. The main focus is on research reactor based techniques with some discussion on other allied methods like positron annihilation.--Publisher's description.
Publisher:
ISBN:
Category : Business & Economics
Languages : en
Pages : 158
Book Description
Industrial growth, energy consumption are seen as measures towards economic developments. With increase in industrial development worldwide, the demand of energy is continually on the rise. Today, the energy industry is facing many challenges. Nuclear fission and nuclear fusion are seen as important future energy sources. Development of innovative reactor designs with large efficiency for fuel burn up is one of the needs of fission reactors. The materials resistant to high dose of radiations in fusion reactors is another major challenge. The production of electricity without global warming is an important pressing demand on the energy sector. The demands on quality control of components for nuclear and heavy industry are very stringent. Development of well characterized, high quality materials is therefore essential for safe, efficient and reliable operation of engineering components. The diagnosis of failure of machinery parts comes from the post operational characterization of materials. Various destructive and non-destructive techniques are used for this purpose. Research reactors have played an important role in non-destructive characterization of materials and have contributed to technology development. This publication focuses on characterization of materials for industries in general and nuclear energy sector in particular. The main focus is on research reactor based techniques with some discussion on other allied methods like positron annihilation.--Publisher's description.
Ceramic Matrix Composites
Author: Narottam P. Bansal
Publisher: John Wiley & Sons
ISBN: 1118832892
Category : Technology & Engineering
Languages : en
Pages : 725
Book Description
This book is a comprehensive source of information on various aspects of ceramic matrix composites (CMC). It covers ceramic and carbon fibers; the fiber-matrix interface; processing, properties and industrial applications of various CMC systems; architecture, mechanical behavior at room and elevated temperatures, environmental effects and protective coatings, foreign object damage, modeling, life prediction, integration and joining. Each chapter in the book is written by specialists and internationally renowned researchers in the field. This book will provide state-of-the-art information on different aspects of CMCs. The book will be directed to researchers working in industry, academia, and national laboratories with interest and professional competence on CMCs. The book will also be useful to senior year and graduate students pursuing degrees in ceramic science and engineering, materials science and engineering, aeronautical, mechanical, and civil or aerospace engineering. Presents recent advances, new approaches and discusses new issues in the field, such as foreign object damage, life predictions, multiscale modeling based on probabilistic approaches, etc. Caters to the increasing interest in the application of ceramic matrix composites (CMC) materials in areas as diverse as aerospace, transport, energy, nuclear, and environment. CMCs are considered ans enabling technology for advanced aeropropulsion, space propulsion, space power, aerospace vehicles, space structures, as well as nuclear and chemical industries. Offers detailed descriptions of ceramic and carbon fibers; fiber-matrix interface; processing, properties and industrial applications of various CMC systems; architecture, mechanical behavior at room and elevated temperatures, environmental effects and protective coatings, foreign object damage, modeling, life prediction, integration/joining.
Publisher: John Wiley & Sons
ISBN: 1118832892
Category : Technology & Engineering
Languages : en
Pages : 725
Book Description
This book is a comprehensive source of information on various aspects of ceramic matrix composites (CMC). It covers ceramic and carbon fibers; the fiber-matrix interface; processing, properties and industrial applications of various CMC systems; architecture, mechanical behavior at room and elevated temperatures, environmental effects and protective coatings, foreign object damage, modeling, life prediction, integration and joining. Each chapter in the book is written by specialists and internationally renowned researchers in the field. This book will provide state-of-the-art information on different aspects of CMCs. The book will be directed to researchers working in industry, academia, and national laboratories with interest and professional competence on CMCs. The book will also be useful to senior year and graduate students pursuing degrees in ceramic science and engineering, materials science and engineering, aeronautical, mechanical, and civil or aerospace engineering. Presents recent advances, new approaches and discusses new issues in the field, such as foreign object damage, life predictions, multiscale modeling based on probabilistic approaches, etc. Caters to the increasing interest in the application of ceramic matrix composites (CMC) materials in areas as diverse as aerospace, transport, energy, nuclear, and environment. CMCs are considered ans enabling technology for advanced aeropropulsion, space propulsion, space power, aerospace vehicles, space structures, as well as nuclear and chemical industries. Offers detailed descriptions of ceramic and carbon fibers; fiber-matrix interface; processing, properties and industrial applications of various CMC systems; architecture, mechanical behavior at room and elevated temperatures, environmental effects and protective coatings, foreign object damage, modeling, life prediction, integration/joining.
Applications of Research Reactors
Author: International Atomic Energy Agency
Publisher: International Atomic Energy Agency
ISBN: 9789201450104
Category : Science
Languages : en
Pages : 108
Book Description
This publication is a comprehensive study that reviews the current situation in a great number of applications of research reactors. It revises the contents of IAEA TECDOC-1234, The Applications of Research Reactors, giving detailed updates on each field of research reactor uses worldwide. Reactors of all sizes and capabilities can benefit from the sharing of current practices and research enabled via this updated version, which describes the requirements for practicing methods as diverse as neutron activation analysis, education and training, neutron scattering and neutron imaging, silicon doping and radioisotope production, material/fuel irradiation and testing, and some others. Many underutilised research reactors can learn how to diversify their technical capabilities, staff and potential commercial partners and users seeking research reactor services and products. The content of the publication has also been strengthened in terms of current issues facing the vast majority of research reactors by including sections describing user and customer relations as well as strategic planning considerations.
Publisher: International Atomic Energy Agency
ISBN: 9789201450104
Category : Science
Languages : en
Pages : 108
Book Description
This publication is a comprehensive study that reviews the current situation in a great number of applications of research reactors. It revises the contents of IAEA TECDOC-1234, The Applications of Research Reactors, giving detailed updates on each field of research reactor uses worldwide. Reactors of all sizes and capabilities can benefit from the sharing of current practices and research enabled via this updated version, which describes the requirements for practicing methods as diverse as neutron activation analysis, education and training, neutron scattering and neutron imaging, silicon doping and radioisotope production, material/fuel irradiation and testing, and some others. Many underutilised research reactors can learn how to diversify their technical capabilities, staff and potential commercial partners and users seeking research reactor services and products. The content of the publication has also been strengthened in terms of current issues facing the vast majority of research reactors by including sections describing user and customer relations as well as strategic planning considerations.
Industrial Carbon and Graphite Materials
Author: Hubert Jaeger
Publisher: John Wiley & Sons
ISBN: 3527674039
Category : Technology & Engineering
Languages : de
Pages : 1008
Book Description
An excellent overview of industrial carbon and graphite materials, especially their manufacture, use and applications in industry. Following a short introduction, the main part of this reference deals with industrial forms, their raw materials, properties and manifold applications. Featuring chapters on carbon and graphite materials in energy application, and as catalysts. It covers all important classes of carbon and graphite, from polygranular materials to fullerenes, and from activated carbon to carbon blacks and nanoforms of carbon. Indispensable for chemists and engineers working in such fields as steel, aluminum, electrochemistry, nanotechnology, catalyst, carbon fibres and lightweight composites.
Publisher: John Wiley & Sons
ISBN: 3527674039
Category : Technology & Engineering
Languages : de
Pages : 1008
Book Description
An excellent overview of industrial carbon and graphite materials, especially their manufacture, use and applications in industry. Following a short introduction, the main part of this reference deals with industrial forms, their raw materials, properties and manifold applications. Featuring chapters on carbon and graphite materials in energy application, and as catalysts. It covers all important classes of carbon and graphite, from polygranular materials to fullerenes, and from activated carbon to carbon blacks and nanoforms of carbon. Indispensable for chemists and engineers working in such fields as steel, aluminum, electrochemistry, nanotechnology, catalyst, carbon fibres and lightweight composites.