Materials for Low-Temperature Fuel Cells PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Materials for Low-Temperature Fuel Cells PDF full book. Access full book title Materials for Low-Temperature Fuel Cells by Bradley Ladewig. Download full books in PDF and EPUB format.

Materials for Low-Temperature Fuel Cells

Materials for Low-Temperature Fuel Cells PDF Author: Bradley Ladewig
Publisher: John Wiley & Sons
ISBN: 3527330429
Category : Technology & Engineering
Languages : en
Pages : 272

Book Description
There are a large number of books available on fuel cells; however, the majority are on specific types of fuel cells such as solid oxide fuel cells, proton exchange membrane fuel cells, or on specific technical aspects of fuel cells, e.g., the system or stack engineering. Thus, there is a need for a book focused on materials requirements in fuel cells. Key Materials in Low-Temperature Fuel Cells is a concise source of the most important and key materials and catalysts in low-temperature fuel cells. A related book will cover key materials in high-temperature fuel cells. The two books form part of the "Materials for Sustainable Energy & Development" series. Key Materials in Low-Temperature Fuel Cells brings together world leaders and experts in this field and provides a lucid description of the materials assessment of fuel cell technologies. With an emphasis on the technical development and applications of key materials in low-temperature fuel cells, this text covers fundamental principles, advancement, challenges, and important current research themes. Topics covered include: proton exchange membrane fuel cells, direct methanol and ethanol fuel cells, microfluidic fuel cells, biofuel cells, alkaline membrane fuel cells, functionalized carbon nanotubes as catalyst supports, nanostructured Pt catalysts, non-PGM catalysts, membranes, and materials modeling. This book is an essential reference source for researchers, engineers and technicians in academia, research institutes and industry working in the fields of fuel cells, energy materials, electrochemistry and materials science and engineering.

Materials for Low-Temperature Fuel Cells

Materials for Low-Temperature Fuel Cells PDF Author: Bradley Ladewig
Publisher: John Wiley & Sons
ISBN: 3527330429
Category : Technology & Engineering
Languages : en
Pages : 272

Book Description
There are a large number of books available on fuel cells; however, the majority are on specific types of fuel cells such as solid oxide fuel cells, proton exchange membrane fuel cells, or on specific technical aspects of fuel cells, e.g., the system or stack engineering. Thus, there is a need for a book focused on materials requirements in fuel cells. Key Materials in Low-Temperature Fuel Cells is a concise source of the most important and key materials and catalysts in low-temperature fuel cells. A related book will cover key materials in high-temperature fuel cells. The two books form part of the "Materials for Sustainable Energy & Development" series. Key Materials in Low-Temperature Fuel Cells brings together world leaders and experts in this field and provides a lucid description of the materials assessment of fuel cell technologies. With an emphasis on the technical development and applications of key materials in low-temperature fuel cells, this text covers fundamental principles, advancement, challenges, and important current research themes. Topics covered include: proton exchange membrane fuel cells, direct methanol and ethanol fuel cells, microfluidic fuel cells, biofuel cells, alkaline membrane fuel cells, functionalized carbon nanotubes as catalyst supports, nanostructured Pt catalysts, non-PGM catalysts, membranes, and materials modeling. This book is an essential reference source for researchers, engineers and technicians in academia, research institutes and industry working in the fields of fuel cells, energy materials, electrochemistry and materials science and engineering.

Electrocatalysts for Low Temperature Fuel Cells

Electrocatalysts for Low Temperature Fuel Cells PDF Author: Thandavarayan Maiyalagan
Publisher: John Wiley & Sons
ISBN: 3527803866
Category : Technology & Engineering
Languages : en
Pages : 420

Book Description
Meeting the need for a text on solutions to conditions which have so far been a drawback for this important and trend-setting technology, this monograph places special emphasis on novel, alternative catalysts of low temperature fuel cells. Comprehensive in its coverage, the text discusses not only the electrochemical, mechanistic, and material scientific background, but also provides extensive chapters on the design and fabrication of electrocatalysts. A valuable resource aimed at multidisciplinary audiences in the fields of academia and industry.

Intermediate Temperature Solid Oxide Fuel Cells

Intermediate Temperature Solid Oxide Fuel Cells PDF Author: Gurbinder Kaur
Publisher: Elsevier
ISBN: 0128174463
Category : Technology & Engineering
Languages : en
Pages : 516

Book Description
Intermediate Temperature Solid Oxide Fuel Cells: Electrolytes, Electrodes and Interconnects introduces the fundamental principles of intermediate solid oxide fuel cells technology. It provides the reader with a broad understanding and practical knowledge of the electrodes, pyrochlore/perovskite/oxide electrolytes and interconnects which form the backbone of the Solid Oxide Fuel Cell (SOFC) unit. Opening with an introduction to the thermodynamics, physiochemical and electrochemical behavior of Solid Oxide Fuel Cells (SOFC), the book also discusses specific materials, including low temperature brownmillerites and aurivillius electrolytes, as well as pyrochlore interconnects. This book analyzes the basic concepts, providing cutting-edge information for both researchers and students. It is a complete reference for Intermediate Solid Oxide Fuel Cells technology that will be a vital resource for those working in materials science, fuel cells and solid state chemistry. Provides a single source of information on glass, electrolytes, interconnects, vanadates, pyrochlores and perovskite SOFC Includes illustrations that provide a clear visual explanation of concepts being discussed Progresses from a discussion of basic concepts that will enable readers to easily comprehend the subject matter

Membranes for Low Temperature Fuel Cells

Membranes for Low Temperature Fuel Cells PDF Author: Surbhi Sharma
Publisher: Walter de Gruyter GmbH & Co KG
ISBN: 311064732X
Category : Technology & Engineering
Languages : en
Pages : 172

Book Description
Membranes for Low Temperature Fuel Cells provides a comprehensive review of novel and state-of-the-art polymer electrolyte membrane fuel cells (PEMFC) membranes. The author highlights requirements and considerations for a membrane as an integral part of PEMFC and its interactions with other components. It is an indispensible resource for anyone interested in new PEMFC membrane materials and concerned with the development, optimisation and testing of such membranes. Various composite membranes (polymer and non-polymer) are discussed along with analyses of the latest fi ller materials like graphene, ionic liquids, polymeric ionic liquids, nanostructured metal oxides and membrane concepts unfolding in the field of PEMFC. This book provides the latest academic and technical developments in PEMFC membranes with thorough insights into various preparation, characterisation, and testing methods utilised. Factors affecting proton conduction, water adsorption, and transportation behaviour of membranes are also deliberated upon. Provides the latest academic and technical developments in PEMFC membranes. Reviews recent literature on ex situ studies and in situ single-cell and stack tests investigating the durability (chemical, thermomechanical) and degradation of membranes. Surbhi Sharma, MSc, PhD Working on graphene oxide and fuel cells since 2007, she has published about 50 research articles/book chapters and holds a patent. She has also been awarded various research grants.

Materials for Fuel Cells

Materials for Fuel Cells PDF Author: M Gasik
Publisher: Elsevier
ISBN: 184569483X
Category : Technology & Engineering
Languages : en
Pages : 512

Book Description
A fuel cell is an electrochemical device that converts the chemical energy of a reaction (between fuel and oxidant) directly into electricity. Given their efficiency and low emissions, fuel cells provide an important alternative to power produced from fossil fuels. A major challenge in their use is the need for better materials to make fuel cells cost-effective and more durable. This important book reviews developments in materials to fulfil the potential of fuel cells as a major power source. After introductory chapters on the key issues in fuel cell materials research, the book reviews the major types of fuel cell. These include alkaline fuel cells, polymer electrolyte fuel cells, direct methanol fuel cells, phosphoric acid fuel cells, molten carbonate fuel cells, solid oxide fuel cells and regenerative fuel cells. The book concludes with reviews of novel fuel cell materials, ways of analysing performance and issues affecting recyclability and life cycle assessment. With its distinguished editor and international team of contributors, Materials for fuel cells is a valuable reference for all those researching, manufacturing and using fuel cells in such areas as automotive engineering. Examines the key issues in fuel cell materials research Reviews the major types of fuel cells such as direct methanol and regenerative fuel cells Further chapters explore ways of analysing performance and issues affecting recyclability and life cycle assessment

Polymer Electrolyte Membrane and Direct Methanol Fuel Cell Technology

Polymer Electrolyte Membrane and Direct Methanol Fuel Cell Technology PDF Author: Christoph Hartnig
Publisher: Elsevier
ISBN: 085709548X
Category : Technology & Engineering
Languages : en
Pages : 522

Book Description
Polymer electrolyte membrane fuel cells (PEMFCs) and direct methanol fuel cells (DMFCs) technology are promising forms of low-temperature electrochemical power conversion technologies that operate on hydrogen and methanol respectively. Featuring high electrical efficiency and low operational emissions, they have attracted intense worldwide commercialization research and development efforts. These R&D efforts include a major drive towards improving materials performance, fuel cell operation and durability. In situ characterization is essential to improving performance and extending operational lifetime through providing information necessary to understand how fuel cell materials perform under operational loads. Polymer Electrolyte Membrane and Direct Methanol Fuel Cell Technology, Volume 2 details in situ characterization, including experimental and innovative techniques, used to understand fuel cell operational issues and materials performance. Part I reviews enhanced techniques for characterization of catalyst activities and processes, such as X-ray absorption and scattering, advanced microscopy and electrochemical mass spectrometry. Part II reviews characterization techniques for water and fuel management, including neutron radiography and tomography, magnetic resonance imaging and Raman spectroscopy. Finally, Part III focuses on locally resolved characterization methods, from transient techniques and electrochemical microscopy, to laser-optical methods and synchrotron radiography. With its international team of expert contributors, Polymer electrolyte membrane and direct methanol fuel cell technology will be an invaluable reference for low temperature fuel cell designers and manufacturers, as well as materials science and electrochemistry researchers and academics. Polymer electrolyte membrane and direct methanol fuel cell technology is an invaluable reference for low temperature fuel cell designers and manufacturers, as well as materials science and electrochemistry researchers and academics. Details in situ characterisation of polymer electrolyte membrane fuel cells (PEMFCs) and direct methanol fuel cells (DMFCs), including the experimental and innovative techniques used to understand fuel cell operational issues and materials performance Examines enhanced techniques for characterisation of catalyst activities and processes, such as X-ray absorption and scattering, advanced microscopy and electrochemical mass spectrometry Reviews characterisation techniques for water and fuel management, including neutron radiography and tomography, and comprehensively covers locally resolved characterisation methods, from transient techniques to laser-optical methods

Membranes for Low Temperature Fuel Cells

Membranes for Low Temperature Fuel Cells PDF Author: Surbhi Sharma
Publisher: Walter de Gruyter GmbH & Co KG
ISBN: 3110647397
Category : Technology & Engineering
Languages : en
Pages : 172

Book Description
Membranes for Low Temperature Fuel Cells provides a comprehensive review of novel and state-of-the-art polymer electrolyte membrane fuel cells (PEMFC) membranes. The author highlights requirements and considerations for a membrane as an integral part of PEMFC and its interactions with other components. It is an indispensible resource for anyone interested in new PEMFC membrane materials and concerned with the development, optimisation and testing of such membranes. Various composite membranes (polymer and non-polymer) are discussed along with analyses of the latest fi ller materials like graphene, ionic liquids, polymeric ionic liquids, nanostructured metal oxides and membrane concepts unfolding in the field of PEMFC. This book provides the latest academic and technical developments in PEMFC membranes with thorough insights into various preparation, characterisation, and testing methods utilised. Factors affecting proton conduction, water adsorption, and transportation behaviour of membranes are also deliberated upon. Provides the latest academic and technical developments in PEMFC membranes. Reviews recent literature on ex situ studies and in situ single-cell and stack tests investigating the durability (chemical, thermomechanical) and degradation of membranes. Surbhi Sharma, MSc, PhD Working on graphene oxide and fuel cells since 2007, she has published about 50 research articles/book chapters and holds a patent. She has also been awarded various research grants.

Advanced Electrocatalysts for Low-Temperature Fuel Cells

Advanced Electrocatalysts for Low-Temperature Fuel Cells PDF Author: Francisco Javier Rodríguez-Varela
Publisher: Springer
ISBN: 3319990195
Category : Science
Languages : en
Pages : 302

Book Description
This book introduces the reader to the state of the art in nanostructured anode and cathode electrocatalysts for low-temperature acid and alkaline fuel cells. It explores the electrocatalysis of anode (oxidation of organic molecules) and cathode (oxygen reduction) reactions. It also offers insights into metal-carbon interactions, correlating them with the catalytic activity of the electrochemical reactions. The book explores the electrocatalytic behaviour of materials based on noble metals and their alloys, as well as metal-metal oxides and metal-free nanostructures. It also discusses the surface and structural modification of carbon supports to enhance the catalytic activity of electrocatalysts for fuel-cell reactions.

Fuel Cell Science and Engineering

Fuel Cell Science and Engineering PDF Author: Detlef Stolten
Publisher: John Wiley & Sons
ISBN: 3527650261
Category : Science
Languages : en
Pages : 1298

Book Description
Fuel cells are expected to play a major role in the future power supply that will transform to renewable, decentralized and fluctuating primary energies. At the same time the share of electric power will continually increase at the expense of thermal and mechanical energy not just in transportation, but also in households. Hydrogen as a perfect fuel for fuel cells and an outstanding and efficient means of bulk storage for renewable energy will spearhead this development together with fuel cells. Moreover, small fuel cells hold great potential for portable devices such as gadgets and medical applications such as pacemakers. This handbook will explore specific fuel cells within and beyond the mainstream development and focuses on materials and production processes for both SOFC and lowtemperature fuel cells, analytics and diagnostics for fuel cells, modeling and simulation as well as balance of plant design and components. As fuel cells are getting increasingly sophisticated and industrially developed the issues of quality assurance and methodology of development are included in this handbook. The contributions to this book come from an international panel of experts from academia, industry, institutions and government. This handbook is oriented toward people looking for detailed information on specific fuel cell types, their materials, production processes, modeling and analytics. Overview information on the contrary on mainstream fuel cells and applications are provided in the book 'Hydrogen and Fuel Cells', published in 2010.

Solid Oxide Fuel Cells

Solid Oxide Fuel Cells PDF Author: Meng Ni
Publisher: Royal Society of Chemistry
ISBN: 1849737770
Category : Science
Languages : en
Pages : 400

Book Description
Solid oxide fuel cells (SOFCs) are promising electrochemical power generation devices that can convert chemical energy of a fuel into electricity in an efficient, environmental-friendly, and quiet manner. Due to their high operating temperature, SOFCs feature fuel flexibility as internal reforming of hydrocarbon fuels and ammonia thermal cracking can be realized in SOFC anode. This book presents an overview of the SOFC technology with a focus on the recent developments in new technologies and new ideas for addressing the key issues of SOFC development. This book first introduces the fundamental principles of SOFCs and compares SOFC technology with conventional heat engines as well as low temperature fuel cells. Then the latest developments in SOFC R&D are reviewed and future directions are discussed. Key issues related to SOFC performance improvement, long-term stability, mathematical modelling, as well as system integration/control are addressed, including material development, infiltration technique for nano-structured electrode fabrication, focused ion beam – scanning electron microscopy (FIB-SEM) technique for microstructure reconstruction, the Lattice Boltzmann Method (LBM) simulation at pore scale, multi-scale modelling, SOFC integration with buildings and other cycles for stationary applications.