Mastering Text Mining with R PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Mastering Text Mining with R PDF full book. Access full book title Mastering Text Mining with R by Ashish Kumar. Download full books in PDF and EPUB format.

Mastering Text Mining with R

Mastering Text Mining with R PDF Author: Ashish Kumar
Publisher: Packt Publishing Ltd
ISBN: 1782174702
Category : Computers
Languages : en
Pages : 259

Book Description
Master text-taming techniques and build effective text-processing applications with R About This Book Develop all the relevant skills for building text-mining apps with R with this easy-to-follow guide Gain in-depth understanding of the text mining process with lucid implementation in the R language Example-rich guide that lets you gain high-quality information from text data Who This Book Is For If you are an R programmer, analyst, or data scientist who wants to gain experience in performing text data mining and analytics with R, then this book is for you. Exposure to working with statistical methods and language processing would be helpful. What You Will Learn Get acquainted with some of the highly efficient R packages such as OpenNLP and RWeka to perform various steps in the text mining process Access and manipulate data from different sources such as JSON and HTTP Process text using regular expressions Get to know the different approaches of tagging texts, such as POS tagging, to get started with text analysis Explore different dimensionality reduction techniques, such as Principal Component Analysis (PCA), and understand its implementation in R Discover the underlying themes or topics that are present in an unstructured collection of documents, using common topic models such as Latent Dirichlet Allocation (LDA) Build a baseline sentence completing application Perform entity extraction and named entity recognition using R In Detail Text Mining (or text data mining or text analytics) is the process of extracting useful and high-quality information from text by devising patterns and trends. R provides an extensive ecosystem to mine text through its many frameworks and packages. Starting with basic information about the statistics concepts used in text mining, this book will teach you how to access, cleanse, and process text using the R language and will equip you with the tools and the associated knowledge about different tagging, chunking, and entailment approaches and their usage in natural language processing. Moving on, this book will teach you different dimensionality reduction techniques and their implementation in R. Next, we will cover pattern recognition in text data utilizing classification mechanisms, perform entity recognition, and develop an ontology learning framework. By the end of the book, you will develop a practical application from the concepts learned, and will understand how text mining can be leveraged to analyze the massively available data on social media. Style and approach This book takes a hands-on, example-driven approach to the text mining process with lucid implementation in R.

Mastering Text Mining with R

Mastering Text Mining with R PDF Author: Ashish Kumar
Publisher: Packt Publishing Ltd
ISBN: 1782174702
Category : Computers
Languages : en
Pages : 259

Book Description
Master text-taming techniques and build effective text-processing applications with R About This Book Develop all the relevant skills for building text-mining apps with R with this easy-to-follow guide Gain in-depth understanding of the text mining process with lucid implementation in the R language Example-rich guide that lets you gain high-quality information from text data Who This Book Is For If you are an R programmer, analyst, or data scientist who wants to gain experience in performing text data mining and analytics with R, then this book is for you. Exposure to working with statistical methods and language processing would be helpful. What You Will Learn Get acquainted with some of the highly efficient R packages such as OpenNLP and RWeka to perform various steps in the text mining process Access and manipulate data from different sources such as JSON and HTTP Process text using regular expressions Get to know the different approaches of tagging texts, such as POS tagging, to get started with text analysis Explore different dimensionality reduction techniques, such as Principal Component Analysis (PCA), and understand its implementation in R Discover the underlying themes or topics that are present in an unstructured collection of documents, using common topic models such as Latent Dirichlet Allocation (LDA) Build a baseline sentence completing application Perform entity extraction and named entity recognition using R In Detail Text Mining (or text data mining or text analytics) is the process of extracting useful and high-quality information from text by devising patterns and trends. R provides an extensive ecosystem to mine text through its many frameworks and packages. Starting with basic information about the statistics concepts used in text mining, this book will teach you how to access, cleanse, and process text using the R language and will equip you with the tools and the associated knowledge about different tagging, chunking, and entailment approaches and their usage in natural language processing. Moving on, this book will teach you different dimensionality reduction techniques and their implementation in R. Next, we will cover pattern recognition in text data utilizing classification mechanisms, perform entity recognition, and develop an ontology learning framework. By the end of the book, you will develop a practical application from the concepts learned, and will understand how text mining can be leveraged to analyze the massively available data on social media. Style and approach This book takes a hands-on, example-driven approach to the text mining process with lucid implementation in R.

Text Mining with R

Text Mining with R PDF Author: Julia Silge
Publisher: "O'Reilly Media, Inc."
ISBN: 1491981628
Category : Computers
Languages : en
Pages : 193

Book Description
Chapter 7. Case Study : Comparing Twitter Archives; Getting the Data and Distribution of Tweets; Word Frequencies; Comparing Word Usage; Changes in Word Use; Favorites and Retweets; Summary; Chapter 8. Case Study : Mining NASA Metadata; How Data Is Organized at NASA; Wrangling and Tidying the Data; Some Initial Simple Exploration; Word Co-ocurrences and Correlations; Networks of Description and Title Words; Networks of Keywords; Calculating tf-idf for the Description Fields; What Is tf-idf for the Description Field Words?; Connecting Description Fields to Keywords; Topic Modeling.

Mastering Social Media Mining with R

Mastering Social Media Mining with R PDF Author: Sharan Kumar Ravindran
Publisher: Packt Publishing Ltd
ISBN: 1784399671
Category : Computers
Languages : en
Pages : 248

Book Description
Extract valuable data from your social media sites and make better business decisions using R About This Book Explore the social media APIs in R to capture data and tame it Employ the machine learning capabilities of R to gain optimal business value A hands-on guide with real-world examples to help you take advantage of the vast opportunities that come with social media data Who This Book Is For If you have basic knowledge of R in terms of its libraries and are aware of different machine learning techniques, this book is for you. Those with experience in data analysis who are interested in mining social media data will find this book useful. What You Will Learn Access APIs of popular social media sites and extract data Perform sentiment analysis and identify trending topics Measure CTR performance for social media campaigns Implement exploratory data analysis and correlation analysis Build a logistic regression model to detect spam messages Construct clusters of pictures using the K-means algorithm and identify popular personalities and destinations Develop recommendation systems using Collaborative Filtering and the Apriori algorithm In Detail With an increase in the number of users on the web, the content generated has increased substantially, bringing in the need to gain insights into the untapped gold mine that is social media data. For computational statistics, R has an advantage over other languages in providing readily-available data extraction and transformation packages, making it easier to carry out your ETL tasks. Along with this, its data visualization packages help users get a better understanding of the underlying data distributions while its range of "standard" statistical packages simplify analysis of the data. This book will teach you how powerful business cases are solved by applying machine learning techniques on social media data. You will learn about important and recent developments in the field of social media, along with a few advanced topics such as Open Authorization (OAuth). Through practical examples, you will access data from R using APIs of various social media sites such as Twitter, Facebook, Instagram, GitHub, Foursquare, LinkedIn, Blogger, and other networks. We will provide you with detailed explanations on the implementation of various use cases using R programming. With this handy guide, you will be ready to embark on your journey as an independent social media analyst. Style and approach This easy-to-follow guide is packed with hands-on, step-by-step examples that will enable you to convert your real-world social media data into useful, practical information.

Mastering Text Mining with R

Mastering Text Mining with R PDF Author: Kumar Ashish
Publisher:
ISBN: 9781783551811
Category :
Languages : en
Pages : 288

Book Description
Master text-taming techniques and build effective text-processing applications with RAbout This Book* This book will help you develop an in-depth understanding of the text mining process with lucid implementation in the R language* After reading this book, you will be able to enhance your skills on building text-mining apps with R* All the examples in the book use the latest version of R, making this book an update-to-date edition in the marketWho This Book Is ForIf you are an R programmer, analyst, or data scientist who wants to gain experience in performing text data mining and analytics with R, then this book is for you. Exposure to working with statistical methods and language processing would be helpful.What You Will Learn* Get acquainted with some of the highly efficient R packages such as OpenNLP and RWeka to perform various steps in the text mining process* Access and manipulate data from different sources such as JSON and HTTP* Process text using regular expressions* Get to know the different approaches of tagging texts, such as POS tagging, to get started with text analysis* Explore different dimensionality reduction techniques, such as Principal Component Analysis (PCA), and understand its implementation in R* Discover the underlying themes or topics that are present in an unstructured collection of documents, using common topic models such as Latent Dirichlet Allocation (LDA)* Build a baseline sentence completing application* Perform entity extraction and named entity recognition using R* Get an introduction to various approaches in opinion mining and their implementation in RIn DetailText Mining (or text data mining or text analytics) is a process of extracting useful and high-quality information from text by devising patterns and trends through machine learning, statistical pattern learning, and related algorithms and methods. R provides an extensive ecosystem to mine text through its many frameworks and packages.This book will help you develop a thorough understanding of the steps in the text mining process and gain confidence in applying the concepts to build text-data driven products.Starting with basic information about the statistics concepts used in text mining, the book will teach you how to access, cleanse, and process text using the R language and teach you how to analyze them. It will equip you with the tools and the associated knowledge about different tagging, chunking, and entailment approaches and their usage in natural language processing.Moving on, the book will teach you different dimensionality reduction techniques and their implementation in R, along with topic modeling, text summarization, and extracting hidden themes from documents and collections. Next, we will cover pattern recognition in text data utilizing classification mechanisms, perform entity recognition, and develop an ontology learning framework. You will learn the concept of an opinion in a text document and be able to apply various techniques to extract a sentiment and opinion out of it.By the end of the book, you will develop a practical application from the concepts learned, and will understand how text mining can be leveraged to analyze the massively available data on social media.

Mastering Data Analysis with R

Mastering Data Analysis with R PDF Author: Gergely Daroczi
Publisher: Packt Publishing Ltd
ISBN: 1783982039
Category : Computers
Languages : en
Pages : 397

Book Description
Gain sharp insights into your data and solve real-world data science problems with R—from data munging to modeling and visualization About This Book Handle your data with precision and care for optimal business intelligence Restructure and transform your data to inform decision-making Packed with practical advice and tips to help you get to grips with data mining Who This Book Is For If you are a data scientist or R developer who wants to explore and optimize your use of R's advanced features and tools, this is the book for you. A basic knowledge of R is required, along with an understanding of database logic. What You Will Learn Connect to and load data from R's range of powerful databases Successfully fetch and parse structured and unstructured data Transform and restructure your data with efficient R packages Define and build complex statistical models with glm Develop and train machine learning algorithms Visualize social networks and graph data Deploy supervised and unsupervised classification algorithms Discover how to visualize spatial data with R In Detail R is an essential language for sharp and successful data analysis. Its numerous features and ease of use make it a powerful way of mining, managing, and interpreting large sets of data. In a world where understanding big data has become key, by mastering R you will be able to deal with your data effectively and efficiently. This book will give you the guidance you need to build and develop your knowledge and expertise. Bridging the gap between theory and practice, this book will help you to understand and use data for a competitive advantage. Beginning with taking you through essential data mining and management tasks such as munging, fetching, cleaning, and restructuring, the book then explores different model designs and the core components of effective analysis. You will then discover how to optimize your use of machine learning algorithms for classification and recommendation systems beside the traditional and more recent statistical methods. Style and approach Covering the essential tasks and skills within data science, Mastering Data Analysis provides you with solutions to the challenges of data science. Each section gives you a theoretical overview before demonstrating how to put the theory to work with real-world use cases and hands-on examples.

Mastering Machine Learning with R

Mastering Machine Learning with R PDF Author: Cory Lesmeister
Publisher: Packt Publishing Ltd
ISBN: 1787284484
Category : Computers
Languages : en
Pages : 410

Book Description
Master machine learning techniques with R to deliver insights in complex projects About This Book Understand and apply machine learning methods using an extensive set of R packages such as XGBOOST Understand the benefits and potential pitfalls of using machine learning methods such as Multi-Class Classification and Unsupervised Learning Implement advanced concepts in machine learning with this example-rich guide Who This Book Is For This book is for data science professionals, data analysts, or anyone with a working knowledge of machine learning, with R who now want to take their skills to the next level and become an expert in the field. What You Will Learn Gain deep insights into the application of machine learning tools in the industry Manipulate data in R efficiently to prepare it for analysis Master the skill of recognizing techniques for effective visualization of data Understand why and how to create test and training data sets for analysis Master fundamental learning methods such as linear and logistic regression Comprehend advanced learning methods such as support vector machines Learn how to use R in a cloud service such as Amazon In Detail This book will teach you advanced techniques in machine learning with the latest code in R 3.3.2. You will delve into statistical learning theory and supervised learning; design efficient algorithms; learn about creating Recommendation Engines; use multi-class classification and deep learning; and more. You will explore, in depth, topics such as data mining, classification, clustering, regression, predictive modeling, anomaly detection, boosted trees with XGBOOST, and more. More than just knowing the outcome, you'll understand how these concepts work and what they do. With a slow learning curve on topics such as neural networks, you will explore deep learning, and more. By the end of this book, you will be able to perform machine learning with R in the cloud using AWS in various scenarios with different datasets. Style and approach The book delivers practical and real-world solutions to problems and a variety of tasks such as complex recommendation systems. By the end of this book, you will have gained expertise in performing R machine learning and will be able to build complex machine learning projects using R and its packages.

R for Data Science

R for Data Science PDF Author: Hadley Wickham
Publisher: "O'Reilly Media, Inc."
ISBN: 1491910364
Category : Computers
Languages : en
Pages : 521

Book Description
Learn how to use R to turn raw data into insight, knowledge, and understanding. This book introduces you to R, RStudio, and the tidyverse, a collection of R packages designed to work together to make data science fast, fluent, and fun. Suitable for readers with no previous programming experience, R for Data Science is designed to get you doing data science as quickly as possible. Authors Hadley Wickham and Garrett Grolemund guide you through the steps of importing, wrangling, exploring, and modeling your data and communicating the results. You'll get a complete, big-picture understanding of the data science cycle, along with basic tools you need to manage the details. Each section of the book is paired with exercises to help you practice what you've learned along the way. You'll learn how to: Wrangle—transform your datasets into a form convenient for analysis Program—learn powerful R tools for solving data problems with greater clarity and ease Explore—examine your data, generate hypotheses, and quickly test them Model—provide a low-dimensional summary that captures true "signals" in your dataset Communicate—learn R Markdown for integrating prose, code, and results

Mastering Spark with R

Mastering Spark with R PDF Author: Javier Luraschi
Publisher: "O'Reilly Media, Inc."
ISBN: 1492046329
Category : Computers
Languages : en
Pages : 296

Book Description
If you’re like most R users, you have deep knowledge and love for statistics. But as your organization continues to collect huge amounts of data, adding tools such as Apache Spark makes a lot of sense. With this practical book, data scientists and professionals working with large-scale data applications will learn how to use Spark from R to tackle big data and big compute problems. Authors Javier Luraschi, Kevin Kuo, and Edgar Ruiz show you how to use R with Spark to solve different data analysis problems. This book covers relevant data science topics, cluster computing, and issues that should interest even the most advanced users. Analyze, explore, transform, and visualize data in Apache Spark with R Create statistical models to extract information and predict outcomes; automate the process in production-ready workflows Perform analysis and modeling across many machines using distributed computing techniques Use large-scale data from multiple sources and different formats with ease from within Spark Learn about alternative modeling frameworks for graph processing, geospatial analysis, and genomics at scale Dive into advanced topics including custom transformations, real-time data processing, and creating custom Spark extensions

Mastering Social Media Mining with Python

Mastering Social Media Mining with Python PDF Author: Marco Bonzanini
Publisher: Packt Publishing Ltd
ISBN: 1783552026
Category : Computers
Languages : en
Pages : 333

Book Description
Acquire and analyze data from all corners of the social web with Python About This Book Make sense of highly unstructured social media data with the help of the insightful use cases provided in this guide Use this easy-to-follow, step-by-step guide to apply analytics to complicated and messy social data This is your one-stop solution to fetching, storing, analyzing, and visualizing social media data Who This Book Is For This book is for intermediate Python developers who want to engage with the use of public APIs to collect data from social media platforms and perform statistical analysis in order to produce useful insights from data. The book assumes a basic understanding of the Python Standard Library and provides practical examples to guide you toward the creation of your data analysis project based on social data. What You Will Learn Interact with a social media platform via their public API with Python Store social data in a convenient format for data analysis Slice and dice social data using Python tools for data science Apply text analytics techniques to understand what people are talking about on social media Apply advanced statistical and analytical techniques to produce useful insights from data Build beautiful visualizations with web technologies to explore data and present data products In Detail Your social media is filled with a wealth of hidden data – unlock it with the power of Python. Transform your understanding of your clients and customers when you use Python to solve the problems of understanding consumer behavior and turning raw data into actionable customer insights. This book will help you acquire and analyze data from leading social media sites. It will show you how to employ scientific Python tools to mine popular social websites such as Facebook, Twitter, Quora, and more. Explore the Python libraries used for social media mining, and get the tips, tricks, and insider insight you need to make the most of them. Discover how to develop data mining tools that use a social media API, and how to create your own data analysis projects using Python for clear insight from your social data. Style and approach This practical, hands-on guide will help you learn everything you need to perform data mining for social media. Throughout the book, we take an example-oriented approach to use Python for data analysis and provide useful tips and tricks that you can use in day-to-day tasks.

Mastering Machine Learning with R

Mastering Machine Learning with R PDF Author: Cory Lesmeister
Publisher: Packt Publishing Ltd
ISBN: 1789613566
Category : Computers
Languages : en
Pages : 344

Book Description
Stay updated with expert techniques for solving data analytics and machine learning challenges and gain insights from complex projects and power up your applications Key FeaturesBuild independent machine learning (ML) systems leveraging the best features of R 3.5Understand and apply different machine learning techniques using real-world examplesUse methods such as multi-class classification, regression, and clusteringBook Description Given the growing popularity of the R-zerocost statistical programming environment, there has never been a better time to start applying ML to your data. This book will teach you advanced techniques in ML ,using? the latest code in R 3.5. You will delve into various complex features of supervised learning, unsupervised learning, and reinforcement learning algorithms to design efficient and powerful ML models. This newly updated edition is packed with fresh examples covering a range of tasks from different domains. Mastering Machine Learning with R starts by showing you how to quickly manipulate data and prepare it for analysis. You will explore simple and complex models and understand how to compare them. You’ll also learn to use the latest library support, such as TensorFlow and Keras-R, for performing advanced computations. Additionally, you’ll explore complex topics, such as natural language processing (NLP), time series analysis, and clustering, which will further refine your skills in developing applications. Each chapter will help you implement advanced ML algorithms using real-world examples. You’ll even be introduced to reinforcement learning, along with its various use cases and models. In the concluding chapters, you’ll get a glimpse into how some of these blackbox models can be diagnosed and understood. By the end of this book, you’ll be equipped with the skills to deploy ML techniques in your own projects or at work. What you will learnPrepare data for machine learning methods with easeUnderstand how to write production-ready code and package it for useProduce simple and effective data visualizations for improved insightsMaster advanced methods, such as Boosted Trees and deep neural networksUse natural language processing to extract insights in relation to textImplement tree-based classifiers, including Random Forest and Boosted TreeWho this book is for This book is for data science professionals, machine learning engineers, or anyone who is looking for the ideal guide to help them implement advanced machine learning algorithms. The book will help you take your skills to the next level and advance further in this field. Working knowledge of machine learning with R is mandatory.