Mastering Machine Learning with ChatGPT PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Mastering Machine Learning with ChatGPT PDF full book. Access full book title Mastering Machine Learning with ChatGPT by Daniel K. Li. Download full books in PDF and EPUB format.

Mastering Machine Learning with ChatGPT

Mastering Machine Learning with ChatGPT PDF Author: Daniel K. Li
Publisher: tredition
ISBN: 3384163842
Category : Business & Economics
Languages : en
Pages : 87

Book Description
In "Mastering Machine Learning with ChatGPT: From Basics to Breakthroughs in Artificial Intelligence," Daniel K. Li demystifies the complexities of artificial intelligence, guiding readers from fundamental concepts to cutting-edge advancements. This indispensable resource illuminates the capabilities of ChatGPT, offering insights into its development, underlying technology, and vast applications. Li expertly navigates through the technical landscapes, making machine learning accessible to enthusiasts and professionals alike, and showcases how ChatGPT is shaping the future of AI, promising to empower readers with the knowledge to leverage AI technology for innovation and growth.

Mastering Machine Learning with ChatGPT

Mastering Machine Learning with ChatGPT PDF Author: Daniel K. Li
Publisher: tredition
ISBN: 3384163842
Category : Business & Economics
Languages : en
Pages : 87

Book Description
In "Mastering Machine Learning with ChatGPT: From Basics to Breakthroughs in Artificial Intelligence," Daniel K. Li demystifies the complexities of artificial intelligence, guiding readers from fundamental concepts to cutting-edge advancements. This indispensable resource illuminates the capabilities of ChatGPT, offering insights into its development, underlying technology, and vast applications. Li expertly navigates through the technical landscapes, making machine learning accessible to enthusiasts and professionals alike, and showcases how ChatGPT is shaping the future of AI, promising to empower readers with the knowledge to leverage AI technology for innovation and growth.

Mastering ChatGPT and Google Colab for Machine Learning

Mastering ChatGPT and Google Colab for Machine Learning PDF Author: Rosario Moscato
Publisher: Orange Education Pvt Ltd
ISBN: 819795349X
Category : Computers
Languages : en
Pages : 441

Book Description
Learn how to harness the power of ChatGPT to streamline data analysis, accelerate model development, and unlock innovative solutions to real-world problems. KEY FEATURES ● Step-by-step progression from foundational machine learning concepts to advanced techniques using ChatGPT and Google Colab. ● Clear and detailed instructions for data preparation, model training, and evaluation, simplifying complex machine learning tasks. ● Extensive use of Google Colab for coding and experimentation, providing a real-world platform to apply learned techniques effectively. DESCRIPTION Unlock the future of machine learning by mastering Google Colab, trusted by over 5 million data scientists, and ChatGPT, powering 100 million users worldwide. This book bridges the latest in AI with practical, hands-on applications for data science. With these game-changing tools at your command, you’ll be able to streamline complex workflows, automate tedious tasks, and propel your AI skills to new heights—making machine learning faster, smarter, and more accessible than ever before. Each chapter unfolds a specific aspect of data science and machine learning, seamlessly integrated with ChatGPT’s free version capabilities. The foundational chapters introduce key machine learning concepts, while advanced sections explore topics such as natural language processing, sentiment analysis, and predictive analytics—all illustrated with real-world examples and interactive exercises. The later chapters focus on optimizing tasks using the more powerful paid version of ChatGPT, culminating in the creation of a custom GPT named “Data Scientist” to tackle specialized challenges. Additionally, the book includes a section on best practices, expert tips, and interview questions, making it a comprehensive resource for aspiring data scientists and seasoned professionals alike. WHAT WILL YOU LEARN ● Learn to integrate and optimize ChatGPT and Google Colab for enhanced data science tasks. ● Master techniques for preparing and cleaning data for analysis. ● Gain a solid grasp of statistical concepts essential for data science. ● Learn the processes for training, evaluating, and refining machine learning models. ● Perform data analysis and preprocessing using natural language processing techniques. ● Customize and deploy GPT models for specific data science applications. WHO IS THIS BOOK FOR? This book is ideal for aspiring data scientists and machine learning enthusiasts eager to enhance their skills with ChatGPT and Google Colab. It also serves tech professionals, academics, and business analysts seeking practical insights into AI and data science. A basic understanding of programming, statistics, and data analysis is recommended before diving in. TABLE OF CONTENTS 1. Introduction to ChatGPT 2. ChatGPT for Data Science and Machine Learning 3. Fundamentals of Statistics for Data Science 4. Missing Values and Outliers 5. Relation Between Variables and Charts 6. Data Preparation 7. Training and Evaluation 8. Fine Tuning, Features Selection, and Final Model 9. Data Preparation and Training 10. Fine Tuning and Final Model 11. Data Analysis and Dataset Manipulation (NLP) 12. Sentiment Analysis and Predictions 13. ChatGPT-4 for a Completely Automated Data Science Workload 14. Customizing GPT for Applications 15. Takeaways and Conclusions Index

Mastering Machine Learning with Spark 2.x

Mastering Machine Learning with Spark 2.x PDF Author: Alex Tellez
Publisher: Packt Publishing Ltd
ISBN: 1785282417
Category : Computers
Languages : en
Pages : 334

Book Description
Unlock the complexities of machine learning algorithms in Spark to generate useful data insights through this data analysis tutorial About This Book Process and analyze big data in a distributed and scalable way Write sophisticated Spark pipelines that incorporate elaborate extraction Build and use regression models to predict flight delays Who This Book Is For Are you a developer with a background in machine learning and statistics who is feeling limited by the current slow and “small data” machine learning tools? Then this is the book for you! In this book, you will create scalable machine learning applications to power a modern data-driven business using Spark. We assume that you already know the machine learning concepts and algorithms and have Spark up and running (whether on a cluster or locally) and have a basic knowledge of the various libraries contained in Spark. What You Will Learn Use Spark streams to cluster tweets online Run the PageRank algorithm to compute user influence Perform complex manipulation of DataFrames using Spark Define Spark pipelines to compose individual data transformations Utilize generated models for off-line/on-line prediction Transfer the learning from an ensemble to a simpler Neural Network Understand basic graph properties and important graph operations Use GraphFrames, an extension of DataFrames to graphs, to study graphs using an elegant query language Use K-means algorithm to cluster movie reviews dataset In Detail The purpose of machine learning is to build systems that learn from data. Being able to understand trends and patterns in complex data is critical to success; it is one of the key strategies to unlock growth in the challenging contemporary marketplace today. With the meteoric rise of machine learning, developers are now keen on finding out how can they make their Spark applications smarter. This book gives you access to transform data into actionable knowledge. The book commences by defining machine learning primitives by the MLlib and H2O libraries. You will learn how to use Binary classification to detect the Higgs Boson particle in the huge amount of data produced by CERN particle collider and classify daily health activities using ensemble Methods for Multi-Class Classification. Next, you will solve a typical regression problem involving flight delay predictions and write sophisticated Spark pipelines. You will analyze Twitter data with help of the doc2vec algorithm and K-means clustering. Finally, you will build different pattern mining models using MLlib, perform complex manipulation of DataFrames using Spark and Spark SQL, and deploy your app in a Spark streaming environment. Style and approach This book takes a practical approach to help you get to grips with using Spark for analytics and to implement machine learning algorithms. We'll teach you about advanced applications of machine learning through illustrative examples. These examples will equip you to harness the potential of machine learning, through Spark, in a variety of enterprise-grade systems.

Mastering Machine Learning Algorithms

Mastering Machine Learning Algorithms PDF Author: Giuseppe Bonaccorso
Publisher: Packt Publishing Ltd
ISBN: 1838821910
Category : Computers
Languages : en
Pages : 799

Book Description
Updated and revised second edition of the bestselling guide to exploring and mastering the most important algorithms for solving complex machine learning problems Key FeaturesUpdated to include new algorithms and techniquesCode updated to Python 3.8 & TensorFlow 2.x New coverage of regression analysis, time series analysis, deep learning models, and cutting-edge applicationsBook Description Mastering Machine Learning Algorithms, Second Edition helps you harness the real power of machine learning algorithms in order to implement smarter ways of meeting today's overwhelming data needs. This newly updated and revised guide will help you master algorithms used widely in semi-supervised learning, reinforcement learning, supervised learning, and unsupervised learning domains. You will use all the modern libraries from the Python ecosystem – including NumPy and Keras – to extract features from varied complexities of data. Ranging from Bayesian models to the Markov chain Monte Carlo algorithm to Hidden Markov models, this machine learning book teaches you how to extract features from your dataset, perform complex dimensionality reduction, and train supervised and semi-supervised models by making use of Python-based libraries such as scikit-learn. You will also discover practical applications for complex techniques such as maximum likelihood estimation, Hebbian learning, and ensemble learning, and how to use TensorFlow 2.x to train effective deep neural networks. By the end of this book, you will be ready to implement and solve end-to-end machine learning problems and use case scenarios. What you will learnUnderstand the characteristics of a machine learning algorithmImplement algorithms from supervised, semi-supervised, unsupervised, and RL domainsLearn how regression works in time-series analysis and risk predictionCreate, model, and train complex probabilistic models Cluster high-dimensional data and evaluate model accuracy Discover how artificial neural networks work – train, optimize, and validate them Work with autoencoders, Hebbian networks, and GANsWho this book is for This book is for data science professionals who want to delve into complex ML algorithms to understand how various machine learning models can be built. Knowledge of Python programming is required.

Master Machine Learning Algorithms

Master Machine Learning Algorithms PDF Author: Jason Brownlee
Publisher: Machine Learning Mastery
ISBN:
Category : Computers
Languages : en
Pages : 162

Book Description
You must understand the algorithms to get good (and be recognized as being good) at machine learning. In this Ebook, finally cut through the math and learn exactly how machine learning algorithms work, then implement them from scratch, step-by-step.

Mastering Machine Learning with scikit-learn

Mastering Machine Learning with scikit-learn PDF Author: Gavin Hackeling
Publisher: Packt Publishing Ltd
ISBN: 1788298497
Category : Computers
Languages : en
Pages : 249

Book Description
Use scikit-learn to apply machine learning to real-world problems About This Book Master popular machine learning models including k-nearest neighbors, random forests, logistic regression, k-means, naive Bayes, and artificial neural networks Learn how to build and evaluate performance of efficient models using scikit-learn Practical guide to master your basics and learn from real life applications of machine learning Who This Book Is For This book is intended for software engineers who want to understand how common machine learning algorithms work and develop an intuition for how to use them, and for data scientists who want to learn about the scikit-learn API. Familiarity with machine learning fundamentals and Python are helpful, but not required. What You Will Learn Review fundamental concepts such as bias and variance Extract features from categorical variables, text, and images Predict the values of continuous variables using linear regression and K Nearest Neighbors Classify documents and images using logistic regression and support vector machines Create ensembles of estimators using bagging and boosting techniques Discover hidden structures in data using K-Means clustering Evaluate the performance of machine learning systems in common tasks In Detail Machine learning is the buzzword bringing computer science and statistics together to build smart and efficient models. Using powerful algorithms and techniques offered by machine learning you can automate any analytical model. This book examines a variety of machine learning models including popular machine learning algorithms such as k-nearest neighbors, logistic regression, naive Bayes, k-means, decision trees, and artificial neural networks. It discusses data preprocessing, hyperparameter optimization, and ensemble methods. You will build systems that classify documents, recognize images, detect ads, and more. You will learn to use scikit-learn's API to extract features from categorical variables, text and images; evaluate model performance, and develop an intuition for how to improve your model's performance. By the end of this book, you will master all required concepts of scikit-learn to build efficient models at work to carry out advanced tasks with the practical approach. Style and approach This book is motivated by the belief that you do not understand something until you can describe it simply. Work through toy problems to develop your understanding of the learning algorithms and models, then apply your learnings to real-life problems.

Deep Learning With Python

Deep Learning With Python PDF Author: Jason Brownlee
Publisher: Machine Learning Mastery
ISBN:
Category : Computers
Languages : en
Pages : 266

Book Description
Deep learning is the most interesting and powerful machine learning technique right now. Top deep learning libraries are available on the Python ecosystem like Theano and TensorFlow. Tap into their power in a few lines of code using Keras, the best-of-breed applied deep learning library. In this Ebook, learn exactly how to get started and apply deep learning to your own machine learning projects.

Mastering Machine Learning Algorithms

Mastering Machine Learning Algorithms PDF Author: Giuseppe Bonaccorso
Publisher: Packt Publishing Ltd
ISBN: 1788625900
Category : Computers
Languages : en
Pages : 567

Book Description
Explore and master the most important algorithms for solving complex machine learning problems. Key Features Discover high-performing machine learning algorithms and understand how they work in depth. One-stop solution to mastering supervised, unsupervised, and semi-supervised machine learning algorithms and their implementation. Master concepts related to algorithm tuning, parameter optimization, and more Book Description Machine learning is a subset of AI that aims to make modern-day computer systems smarter and more intelligent. The real power of machine learning resides in its algorithms, which make even the most difficult things capable of being handled by machines. However, with the advancement in the technology and requirements of data, machines will have to be smarter than they are today to meet the overwhelming data needs; mastering these algorithms and using them optimally is the need of the hour. Mastering Machine Learning Algorithms is your complete guide to quickly getting to grips with popular machine learning algorithms. You will be introduced to the most widely used algorithms in supervised, unsupervised, and semi-supervised machine learning, and will learn how to use them in the best possible manner. Ranging from Bayesian models to the MCMC algorithm to Hidden Markov models, this book will teach you how to extract features from your dataset and perform dimensionality reduction by making use of Python-based libraries such as scikit-learn. You will also learn how to use Keras and TensorFlow to train effective neural networks. If you are looking for a single resource to study, implement, and solve end-to-end machine learning problems and use-cases, this is the book you need. What you will learn Explore how a ML model can be trained, optimized, and evaluated Understand how to create and learn static and dynamic probabilistic models Successfully cluster high-dimensional data and evaluate model accuracy Discover how artificial neural networks work and how to train, optimize, and validate them Work with Autoencoders and Generative Adversarial Networks Apply label spreading and propagation to large datasets Explore the most important Reinforcement Learning techniques Who this book is for This book is an ideal and relevant source of content for data science professionals who want to delve into complex machine learning algorithms, calibrate models, and improve the predictions of the trained model. A basic knowledge of machine learning is preferred to get the best out of this guide.

Mastering Machine Learning on AWS

Mastering Machine Learning on AWS PDF Author: Dr. Saket S.R. Mengle
Publisher: Packt Publishing Ltd
ISBN: 1789347505
Category : Computers
Languages : en
Pages : 293

Book Description
Gain expertise in ML techniques with AWS to create interactive apps using SageMaker, Apache Spark, and TensorFlow. Key FeaturesBuild machine learning apps on Amazon Web Services (AWS) using SageMaker, Apache Spark and TensorFlowLearn model optimization, and understand how to scale your models using simple and secure APIsDevelop, train, tune and deploy neural network models to accelerate model performance in the cloudBook Description AWS is constantly driving new innovations that empower data scientists to explore a variety of machine learning (ML) cloud services. This book is your comprehensive reference for learning and implementing advanced ML algorithms in AWS cloud. As you go through the chapters, you’ll gain insights into how these algorithms can be trained, tuned and deployed in AWS using Apache Spark on Elastic Map Reduce (EMR), SageMaker, and TensorFlow. While you focus on algorithms such as XGBoost, linear models, factorization machines, and deep nets, the book will also provide you with an overview of AWS as well as detailed practical applications that will help you solve real-world problems. Every practical application includes a series of companion notebooks with all the necessary code to run on AWS. In the next few chapters, you will learn to use SageMaker and EMR Notebooks to perform a range of tasks, right from smart analytics, and predictive modeling, through to sentiment analysis. By the end of this book, you will be equipped with the skills you need to effectively handle machine learning projects and implement and evaluate algorithms on AWS. What you will learnManage AI workflows by using AWS cloud to deploy services that feed smart data productsUse SageMaker services to create recommendation modelsScale model training and deployment using Apache Spark on EMRUnderstand how to cluster big data through EMR and seamlessly integrate it with SageMakerBuild deep learning models on AWS using TensorFlow and deploy them as servicesEnhance your apps by combining Apache Spark and Amazon SageMakerWho this book is for This book is for data scientists, machine learning developers, deep learning enthusiasts and AWS users who want to build advanced models and smart applications on the cloud using AWS and its integration services. Some understanding of machine learning concepts, Python programming and AWS will be beneficial.

Mastering Machine Learning with R

Mastering Machine Learning with R PDF Author: Cory Lesmeister
Publisher: Packt Publishing Ltd
ISBN: 1789613566
Category : Computers
Languages : en
Pages : 344

Book Description
Stay updated with expert techniques for solving data analytics and machine learning challenges and gain insights from complex projects and power up your applications Key FeaturesBuild independent machine learning (ML) systems leveraging the best features of R 3.5Understand and apply different machine learning techniques using real-world examplesUse methods such as multi-class classification, regression, and clusteringBook Description Given the growing popularity of the R-zerocost statistical programming environment, there has never been a better time to start applying ML to your data. This book will teach you advanced techniques in ML ,using? the latest code in R 3.5. You will delve into various complex features of supervised learning, unsupervised learning, and reinforcement learning algorithms to design efficient and powerful ML models. This newly updated edition is packed with fresh examples covering a range of tasks from different domains. Mastering Machine Learning with R starts by showing you how to quickly manipulate data and prepare it for analysis. You will explore simple and complex models and understand how to compare them. You’ll also learn to use the latest library support, such as TensorFlow and Keras-R, for performing advanced computations. Additionally, you’ll explore complex topics, such as natural language processing (NLP), time series analysis, and clustering, which will further refine your skills in developing applications. Each chapter will help you implement advanced ML algorithms using real-world examples. You’ll even be introduced to reinforcement learning, along with its various use cases and models. In the concluding chapters, you’ll get a glimpse into how some of these blackbox models can be diagnosed and understood. By the end of this book, you’ll be equipped with the skills to deploy ML techniques in your own projects or at work. What you will learnPrepare data for machine learning methods with easeUnderstand how to write production-ready code and package it for useProduce simple and effective data visualizations for improved insightsMaster advanced methods, such as Boosted Trees and deep neural networksUse natural language processing to extract insights in relation to textImplement tree-based classifiers, including Random Forest and Boosted TreeWho this book is for This book is for data science professionals, machine learning engineers, or anyone who is looking for the ideal guide to help them implement advanced machine learning algorithms. The book will help you take your skills to the next level and advance further in this field. Working knowledge of machine learning with R is mandatory.