Author: Guy Roger Clements
Publisher: Wildside Press LLC
ISBN: 1434471411
Category : Mathematics
Languages : en
Pages : 278
Book Description
This manual contains facts and formulas that are useful in courses in mathematics and mechanics in colleges and engineering schools, arranged and printed in a form that makes them readily available for rapid work with minimum eye strain.
Manual of Mathematics and Mechanics
Author: Guy Roger Clements
Publisher: Wildside Press LLC
ISBN: 1434471411
Category : Mathematics
Languages : en
Pages : 278
Book Description
This manual contains facts and formulas that are useful in courses in mathematics and mechanics in colleges and engineering schools, arranged and printed in a form that makes them readily available for rapid work with minimum eye strain.
Publisher: Wildside Press LLC
ISBN: 1434471411
Category : Mathematics
Languages : en
Pages : 278
Book Description
This manual contains facts and formulas that are useful in courses in mathematics and mechanics in colleges and engineering schools, arranged and printed in a form that makes them readily available for rapid work with minimum eye strain.
Mathematical Methods for Mechanics
Author: Eckart W. Gekeler
Publisher: Springer Science & Business Media
ISBN: 3540692797
Category : Technology & Engineering
Languages : en
Pages : 636
Book Description
Mathematics is undoubtedly the key to state-of-the-art high technology. It is aninternationaltechnicallanguageandprovestobeaneternallyyoungscience to those who have learned its ways. Long an indispensable part of research thanks to modeling and simulation, mathematics is enjoying particular vit- ity now more than ever. Nevertheless, this stormy development is resulting in increasingly high requirements for students in technical disciplines, while general interest in mathematics continues to wane at the same time. This book and its appendices on the Internet seek to deal with this issue, helping students master the di?cult transition from the receptive to the productive phase of their education. The author has repeatedly held a three-semester introductory course - titled Higher Mathematics at the University of Stuttgart and used a series of “handouts” to show further aspects, make the course contents more motiv- ing, and connect with the mechanics lectures taking place at the same time. One part of the book has more or less evolved from this on its own. True to the original objective, this part treats a variety of separate topics of varying degrees of di?culty; nevertheless, all these topics are oriented to mechanics. Anotherpartofthisbookseekstoo?eraselectionofunderstandablereal- ticmodelsthatcanbeimplementeddirectlyfromthemultitudeofmathema- calresources.TheauthordoesnotattempttohidehispreferenceofNumerical Mathematics and thus places importance on careful theoretical preparation.
Publisher: Springer Science & Business Media
ISBN: 3540692797
Category : Technology & Engineering
Languages : en
Pages : 636
Book Description
Mathematics is undoubtedly the key to state-of-the-art high technology. It is aninternationaltechnicallanguageandprovestobeaneternallyyoungscience to those who have learned its ways. Long an indispensable part of research thanks to modeling and simulation, mathematics is enjoying particular vit- ity now more than ever. Nevertheless, this stormy development is resulting in increasingly high requirements for students in technical disciplines, while general interest in mathematics continues to wane at the same time. This book and its appendices on the Internet seek to deal with this issue, helping students master the di?cult transition from the receptive to the productive phase of their education. The author has repeatedly held a three-semester introductory course - titled Higher Mathematics at the University of Stuttgart and used a series of “handouts” to show further aspects, make the course contents more motiv- ing, and connect with the mechanics lectures taking place at the same time. One part of the book has more or less evolved from this on its own. True to the original objective, this part treats a variety of separate topics of varying degrees of di?culty; nevertheless, all these topics are oriented to mechanics. Anotherpartofthisbookseekstoo?eraselectionofunderstandablereal- ticmodelsthatcanbeimplementeddirectlyfromthemultitudeofmathema- calresources.TheauthordoesnotattempttohidehispreferenceofNumerical Mathematics and thus places importance on careful theoretical preparation.
Mathematics of Classical and Quantum Physics
Author: Frederick W. Byron
Publisher: Courier Corporation
ISBN: 0486135063
Category : Science
Languages : en
Pages : 674
Book Description
Graduate-level text offers unified treatment of mathematics applicable to many branches of physics. Theory of vector spaces, analytic function theory, theory of integral equations, group theory, and more. Many problems. Bibliography.
Publisher: Courier Corporation
ISBN: 0486135063
Category : Science
Languages : en
Pages : 674
Book Description
Graduate-level text offers unified treatment of mathematics applicable to many branches of physics. Theory of vector spaces, analytic function theory, theory of integral equations, group theory, and more. Many problems. Bibliography.
A Manual of Mechanics
Author: Thomas Minchin Goodeve
Publisher:
ISBN:
Category : Mechanics
Languages : en
Pages : 252
Book Description
Publisher:
ISBN:
Category : Mechanics
Languages : en
Pages : 252
Book Description
Mathematical Methods in Quantum Mechanics
Author: Gerald Teschl
Publisher: American Mathematical Soc.
ISBN: 0821846604
Category : Mathematics
Languages : en
Pages : 322
Book Description
Quantum mechanics and the theory of operators on Hilbert space have been deeply linked since their beginnings in the early twentieth century. States of a quantum system correspond to certain elements of the configuration space and observables correspond to certain operators on the space. This book is a brief, but self-contained, introduction to the mathematical methods of quantum mechanics, with a view towards applications to Schrodinger operators. Part 1 of the book is a concise introduction to the spectral theory of unbounded operators. Only those topics that will be needed for later applications are covered. The spectral theorem is a central topic in this approach and is introduced at an early stage. Part 2 starts with the free Schrodinger equation and computes the free resolvent and time evolution. Position, momentum, and angular momentum are discussed via algebraic methods. Various mathematical methods are developed, which are then used to compute the spectrum of the hydrogen atom. Further topics include the nondegeneracy of the ground state, spectra of atoms, and scattering theory. This book serves as a self-contained introduction to spectral theory of unbounded operators in Hilbert space with full proofs and minimal prerequisites: Only a solid knowledge of advanced calculus and a one-semester introduction to complex analysis are required. In particular, no functional analysis and no Lebesgue integration theory are assumed. It develops the mathematical tools necessary to prove some key results in nonrelativistic quantum mechanics. Mathematical Methods in Quantum Mechanics is intended for beginning graduate students in both mathematics and physics and provides a solid foundation for reading more advanced books and current research literature. It is well suited for self-study and includes numerous exercises (many with hints).
Publisher: American Mathematical Soc.
ISBN: 0821846604
Category : Mathematics
Languages : en
Pages : 322
Book Description
Quantum mechanics and the theory of operators on Hilbert space have been deeply linked since their beginnings in the early twentieth century. States of a quantum system correspond to certain elements of the configuration space and observables correspond to certain operators on the space. This book is a brief, but self-contained, introduction to the mathematical methods of quantum mechanics, with a view towards applications to Schrodinger operators. Part 1 of the book is a concise introduction to the spectral theory of unbounded operators. Only those topics that will be needed for later applications are covered. The spectral theorem is a central topic in this approach and is introduced at an early stage. Part 2 starts with the free Schrodinger equation and computes the free resolvent and time evolution. Position, momentum, and angular momentum are discussed via algebraic methods. Various mathematical methods are developed, which are then used to compute the spectrum of the hydrogen atom. Further topics include the nondegeneracy of the ground state, spectra of atoms, and scattering theory. This book serves as a self-contained introduction to spectral theory of unbounded operators in Hilbert space with full proofs and minimal prerequisites: Only a solid knowledge of advanced calculus and a one-semester introduction to complex analysis are required. In particular, no functional analysis and no Lebesgue integration theory are assumed. It develops the mathematical tools necessary to prove some key results in nonrelativistic quantum mechanics. Mathematical Methods in Quantum Mechanics is intended for beginning graduate students in both mathematics and physics and provides a solid foundation for reading more advanced books and current research literature. It is well suited for self-study and includes numerous exercises (many with hints).
Rigid Body Mechanics
Author: William B. Heard
Publisher: John Wiley & Sons
ISBN: 3527618821
Category : Science
Languages : en
Pages : 262
Book Description
This textbook is a modern, concise and focused treatment of the mathematical techniques, physical theories and applications of rigid body mechanics, bridging the gap between the geometric and more classical approaches to the topic. It emphasizes the fundamentals of the subject, stresses the importance of notation, integrates the modern geometric view of mechanics and offers a wide variety of examples -- ranging from molecular dynamics to mechanics of robots and planetary rotational dynamics. The author has unified his presentation such that applied mathematicians, mechanical and astro-aerodynamical engineers, physicists, computer scientists and astronomers can all meet the subject on common ground, despite their diverse applications. * Free solutions manual available for lecturers at www.wiley-vch.de/supplements/
Publisher: John Wiley & Sons
ISBN: 3527618821
Category : Science
Languages : en
Pages : 262
Book Description
This textbook is a modern, concise and focused treatment of the mathematical techniques, physical theories and applications of rigid body mechanics, bridging the gap between the geometric and more classical approaches to the topic. It emphasizes the fundamentals of the subject, stresses the importance of notation, integrates the modern geometric view of mechanics and offers a wide variety of examples -- ranging from molecular dynamics to mechanics of robots and planetary rotational dynamics. The author has unified his presentation such that applied mathematicians, mechanical and astro-aerodynamical engineers, physicists, computer scientists and astronomers can all meet the subject on common ground, despite their diverse applications. * Free solutions manual available for lecturers at www.wiley-vch.de/supplements/
Cambridge International AS and A Level Mathematics: Mechanics Coursebook
Author: Jan Dangerfield
Publisher: Cambridge University Press
ISBN: 1108407269
Category : Education
Languages : en
Pages : 249
Book Description
This series has been developed specifically for the Cambridge International AS & A Level Mathematics (9709) syllabus to be examined from 2020. Cambridge International AS & A Level Mathematics: Mechanics matches the corresponding unit of the syllabus, with clear and logical progression through. It contains materials on topics such as velocity and acceleration, force and motion, friction, connected particles, motion in a straight line, momentum, and work and energy. This coursebook contains a variety of features including recap sections for students to check their prior knowledge, detailed explanations and worked examples, end-of-chapter and cross-topic review exercises and 'Explore' tasks to encourage deeper thinking around mathematical concepts. Answers to coursebook questions are at the back of the book.
Publisher: Cambridge University Press
ISBN: 1108407269
Category : Education
Languages : en
Pages : 249
Book Description
This series has been developed specifically for the Cambridge International AS & A Level Mathematics (9709) syllabus to be examined from 2020. Cambridge International AS & A Level Mathematics: Mechanics matches the corresponding unit of the syllabus, with clear and logical progression through. It contains materials on topics such as velocity and acceleration, force and motion, friction, connected particles, motion in a straight line, momentum, and work and energy. This coursebook contains a variety of features including recap sections for students to check their prior knowledge, detailed explanations and worked examples, end-of-chapter and cross-topic review exercises and 'Explore' tasks to encourage deeper thinking around mathematical concepts. Answers to coursebook questions are at the back of the book.
Guide to Essential Math
Author: Sy M. Blinder
Publisher: Newnes
ISBN: 0124071589
Category : Mathematics
Languages : en
Pages : 285
Book Description
This book reminds students in junior, senior and graduate level courses in physics, chemistry and engineering of the math they may have forgotten (or learned imperfectly) that is needed to succeed in science courses. The focus is on math actually used in physics, chemistry, and engineering, and the approach to mathematics begins with 12 examples of increasing complexity, designed to hone the student's ability to think in mathematical terms and to apply quantitative methods to scientific problems. Detailed illustrations and links to reference material online help further comprehension. The second edition features new problems and illustrations and features expanded chapters on matrix algebra and differential equations. - Use of proven pedagogical techniques developed during the author's 40 years of teaching experience - New practice problems and exercises to enhance comprehension - Coverage of fairly advanced topics, including vector and matrix algebra, partial differential equations, special functions and complex variables
Publisher: Newnes
ISBN: 0124071589
Category : Mathematics
Languages : en
Pages : 285
Book Description
This book reminds students in junior, senior and graduate level courses in physics, chemistry and engineering of the math they may have forgotten (or learned imperfectly) that is needed to succeed in science courses. The focus is on math actually used in physics, chemistry, and engineering, and the approach to mathematics begins with 12 examples of increasing complexity, designed to hone the student's ability to think in mathematical terms and to apply quantitative methods to scientific problems. Detailed illustrations and links to reference material online help further comprehension. The second edition features new problems and illustrations and features expanded chapters on matrix algebra and differential equations. - Use of proven pedagogical techniques developed during the author's 40 years of teaching experience - New practice problems and exercises to enhance comprehension - Coverage of fairly advanced topics, including vector and matrix algebra, partial differential equations, special functions and complex variables
Vectors, Tensors and the Basic Equations of Fluid Mechanics
Author: Rutherford Aris
Publisher: Courier Corporation
ISBN: 048613489X
Category : Mathematics
Languages : en
Pages : 322
Book Description
Introductory text, geared toward advanced undergraduate and graduate students, applies mathematics of Cartesian and general tensors to physical field theories and demonstrates them in terms of the theory of fluid mechanics. 1962 edition.
Publisher: Courier Corporation
ISBN: 048613489X
Category : Mathematics
Languages : en
Pages : 322
Book Description
Introductory text, geared toward advanced undergraduate and graduate students, applies mathematics of Cartesian and general tensors to physical field theories and demonstrates them in terms of the theory of fluid mechanics. 1962 edition.
Mathematics for Cambridge International AS and A Level
Author: Phillip Crossley
Publisher: Oxford University Press, USA
ISBN: 9780198382614
Category : Mathematics
Languages : en
Pages : 152
Book Description
Supporting achievement in the latest syllabus, this stretching course builds the advanced skills students need for Cambridge assessments and for higher education. Engaging, real world applications are included throughout, making mathematics relevant to real life. The series is edited by David Rayner, whose clear, practice-based approach is trusted around the world to build students' mathematical and analytical skills. A Worked Solutions Manual is also available, covering Pure Mathematics, Mechanics, and Statistics, to comprehensively support understanding.
Publisher: Oxford University Press, USA
ISBN: 9780198382614
Category : Mathematics
Languages : en
Pages : 152
Book Description
Supporting achievement in the latest syllabus, this stretching course builds the advanced skills students need for Cambridge assessments and for higher education. Engaging, real world applications are included throughout, making mathematics relevant to real life. The series is edited by David Rayner, whose clear, practice-based approach is trusted around the world to build students' mathematical and analytical skills. A Worked Solutions Manual is also available, covering Pure Mathematics, Mechanics, and Statistics, to comprehensively support understanding.